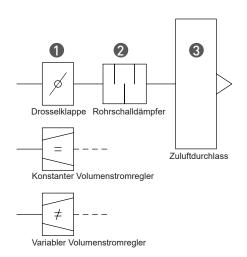


▲ INDULFLOOR kann für eine Vielzahl von Anwendungsbereichen in der modernen Architektur eingesetzt werden, insbesondere Büroräume.

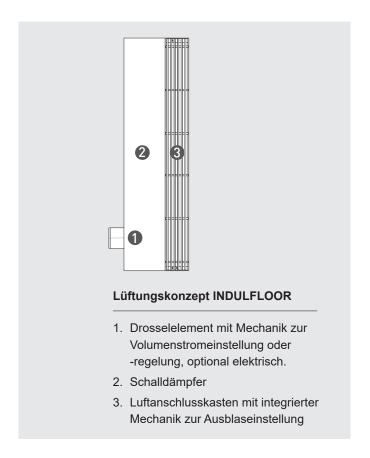
BODEN-LUFTDURCHLASS INDULFLOOR

Drei Funktionen vereint in einem Boden-Luftdurchlass

INDULFLOOR ist ein Boden-Luftdurchlass mit integriertem Schalldämpfer und innovativer Mechanik zur bedarfsgerechten Volumenstromregelung und Ausblaseinstellung.


INDULFLOOR ist ideal geeignet zur Integration in Doppelböden und kann dabei sehr platzsparend entlang der Fassade eingebaut werden.

INDULFLOOR



DREI FUNKTIONEN VEREINT IN EINEM BODEN-LUFTDURCHLASS

Lüftungsschema marktüblicher Boden-Luftdurchlass

- Drosselklappe, Volumenstrombegrenzer oder -regler
- 2. Rohrschalldämpfer
- Luftanschlusskasten mit Durchlass

EINBAUSITUATION

INDULFLOOR wird direkt auf dem Rohfußboden aufgestellt. Über die höhenverstellbaren Füße lassen sich Bautoleranzen leicht kompensieren, so dass der Auslass problemlos ausgerichtet und anschließend über die körperschallentkoppelten Befestigungslaschen gesichert werden kann.

INDULFLOOR verfügt über eine stabile Konsole, auf die der Bodenbelag direkt aufgebracht werden kann. Die Bodenplatten des Doppelbodens können im Bereich von INDULFLOOR ausgespart werden, wodurch sich die gesamte Installationshöhe deutlich reduziert.

INDULFLOOR lässt sich sowohl als Einzelauslass als auch in Bandanordnung installieren. Bei der Bandanordnung wird zwischen den aktiven Auslässen ein Verbindungsblech montiert, auf das dann anschließend das Lineargitterzwischenstück aufgelegt werden kann. So lassen sich mehrere INDULFLOOR optisch zu einem durchgängigen Band zusammenfügen.

Einzelelement

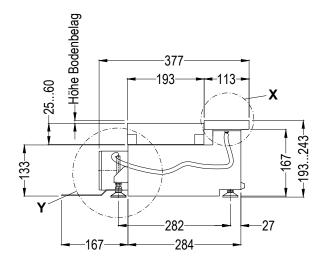
INDULFLOOR BESONDERHEITEN

Alle Vorteile auf einen Blick

Einbau	Niedrige Kastenhöhe für problemlosen Einbau im Doppelboden, ohne Abstand zu Fassade.
Komponenten	Kompakte Fertiglösung: Luftdurchlass, Volumenstrom- und Ausblaseinstellung (optional mit Stellantrieb oder Volumenstromregler), Schalldämpfung.
Montage / Installation	Einteilig, dadurch einfach und schnell zu montieren.
Inbetriebnahme	Keine Einregulierung notwendig, werksseitig voreingestellt.
Volumenstromeinstellung	Keine Revisionsöffnung notwendig, da Volumenstromeinstellung manuell vom Raum aus oder elektrisch möglich ist und der Druckmessnippel zur Messung des eingestellten Volumenstroms dient.
Raumströmung + Thermische Behaglichkeit	Induktives Luftdurchlassprofil für optimale Misch-/Quellströmung unabhängig vom eingestellten Volumenstrom. Auch nachträgliche Erhöhung oder Reduzierung des Luftvolumenstroms ohne Komforteinbußen möglich.
Akustik	Schalldämpfung im Luftdurchlass integriert.
Reinigung	Reinigung der Bodenwanne des Schlitzdurchlasses gemäß VDI 6022 durch Entfernen des Lineargitters und des Luftdurchlassprofils.
Flexibilität	Elektrischer Stellantrieb oder Volumenstromregler lassen sich nachträglich vom Raum aus nachrüsten.
Energie	Energieeffiziente Lüftung mit minimalem Druckverlust. Elektrische Verstellung und variable Volumenstromregelung bietet Energie- und Kosteneinsparung durch bedarfsgerechte Lüftung.

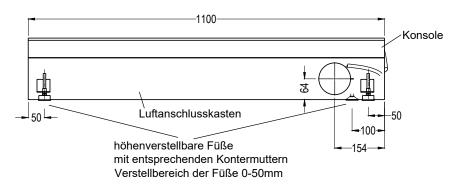
Alle Varianten auf einen Blick

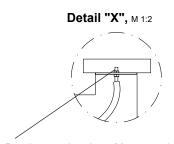
			Manuell	2-Stufig	Stetig	Master/Follower ¹
Volumenstromeinstellung	V		Hand	Elektrisch		
	V _{Soll}					
Werkseitig	V _{Min} und V _{Max}					
	V_{Min} und V_{Max}	stufenlos				
		autark ²				
Luftdurchlass integriert						•
Ausblaseinstellung automatisch						
Schalldämpfer integriert						


 $^{^{1)}}$ Einsatz nur in Kombination mit einem Master-Gerät

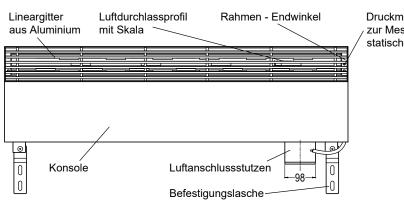
²⁾Kanaldruckunabhängig

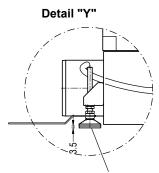
AUSFÜHRUNGSVARIANTEN


Seitenansicht rechts



Seitenansicht links

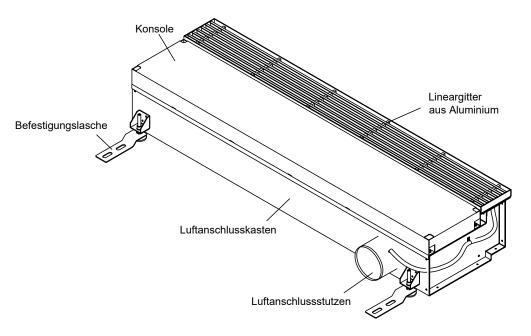

Vorderansicht



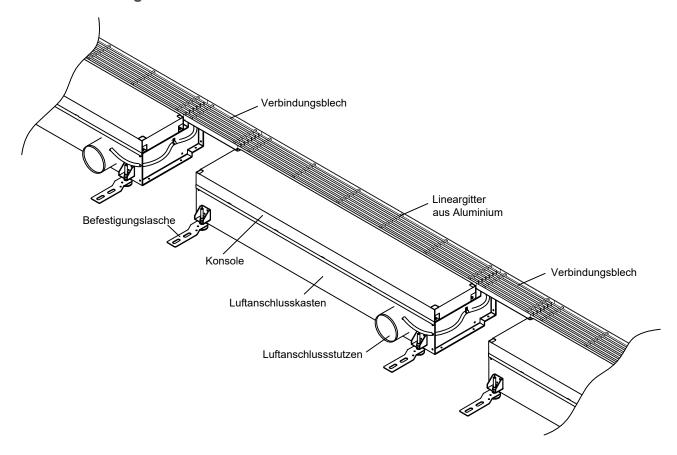
Druckmessnippel zur Messung des statischen Drucks im Anschlusskasten

Draufsicht

Druckmessnippel zur Messung des statischen Drucks


Optional Anti-Slip Pads zum Anbringen

Gesamthöhe inkl. Stellfüße ohne Anti-Slip Pads 193 ... 243 mm Gesamthöhe inkl. Stellfüße mit Anti-Slip Pads 196,5 ... 246,5 mm Höhe Bodenbelag max. 35 mm



Einzelelement

Bandanordnung

INDULFLOOR

Volumenstrom- und Ausblaseinstellung

Fremdenergie	Ohne	Elektrisch				
Ausführung/Stellantrieb	Manuell	2-Stufig	Stetig	Master	Follower	
Funktion/Volumenstrom	1 Wert einstellen	2 Stufen schalten	variabel einstellen	variabel regeln	synchron zum Master-Gerät einstellen	
Für Volumenstrom-System	CAV DPC	VAV / DCV + DPC	VAV / DCV + DPC	VAV / DCV + (DPC)	VAV / DCV + DPC	
Vordruckunabhängig*	nein	nein	nein	ja		
Strangdruckregler	erforderlich	erforderlich	erforderlich	empfohlen		

^{*} Der Vordruck ist der statische Druck am Luftanschlussstutzen des Bodenluftdurchlass. Schwankt dieser Druck, so ändert sich auch der Volumenstrom. In der vordruckunabhängigen Ausführung werden solche Änderungen selbsttätig ausgeglichen, sodass der Volumenstrom ohne vorgeschalteten Strangdruckregler innerhalb eines bestimmten Druckbereichs konstant gehalten wird.

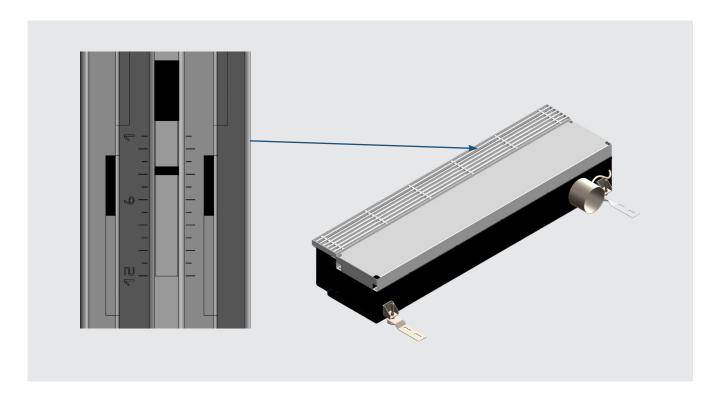
Erläuterung der Volumenstrom-Systeme:

CAV (Constant Air Volume): Konstanter Luftvolumenstrom VAV (Variable Air Volume): Variabler Luftvolumenstrom DCV (Demand Controlled Ventilation): Bedarfsgeregelte Lüftung

z.B. in Abhängigkeit von Präsenz oder CO2.

Hierzu ist die Einbindung von bauseitiger Sensorik möglich.

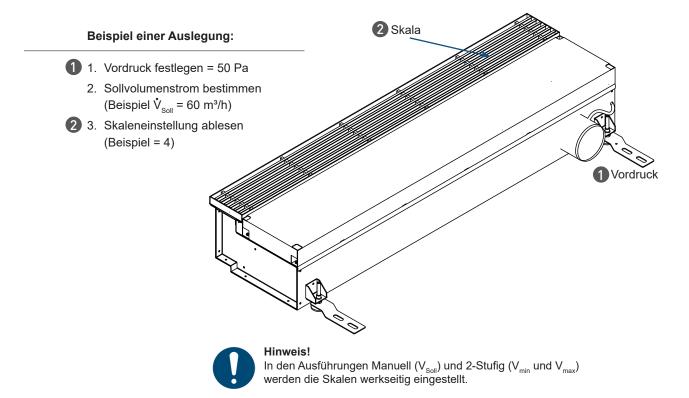
DPC (Duct Pressure Control): Der statische Druck im Strang wird auf einen konstanten Wert gehalten


		Vordruck ∆p 30 Pa		Vordruc	k ∆p 40 Pa	Vordruck ∆p 50 Pa		
	Skala	V [m³/h]	LWA [dB(A)]	V [m³/h]	LWA [dB(A)]	V [m³/h]	LWA [dB(A)]	
- 1	3	29	< 15	34	18	38	21	
	4	45	< 15	52	18	59	22	
	5	61	18	71	22	80	26	
	6	79	23	91	27	101	30	
	7	95	27	110	31	122	34	
	8	109	29	126	33	141	36	
	9	118	31	136	35	152	38	
	10	125	32	144	36	162	39	
	11	132	33	153	37	171	40	
	12	140	33	162	38	181	41	

Ausgewählter Vordruck und Schallleistungspegel in Abhängigkeit des Zuluftvolumenstroms und der Skaleneinstellung pro Luftdurchlass.

Hinweis

Bei Ausführung mit Stellantrieb kann sich die Schallleistung während der Volumenstromeinstellung geringfügig erhöhen. Die Schallleistung des Stellantriebs allein beträgt 35 dB(A). In einem stabilen Regelkreis beträgt die Aktivzeit des Stellantriebs max. 5%.



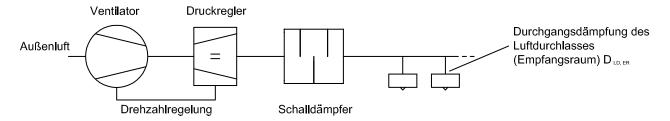
INDULFLOOR

AUSLEGUNGSBEISPIEL

Seite 8

DURCHGANGSDÄMPFUNG

Praktische Fragen zur Durchgangsdämpfung


- **Fall 1:** Inwieweit reduziert der INDULFLOOR als Schalldämpfer, die noch im Luftkanalnetz befindlichen Strömungsgeräusche (z.B. von Ventilatoren, Formstücken, Druckregler, Drosselklappen....)?
- **Fall 2:** Inwieweit kann die Schallübertragung, besonders von Gesprächen zwischen benachbarten Räumen reduziert werden?

Im INDULFLOOR ist ein Schalldämpfer bzw. Telefonieschalldämpfer integriert, der für eine erhebliche Reduzierung des übertragenen Telefonieschalls sorgt.

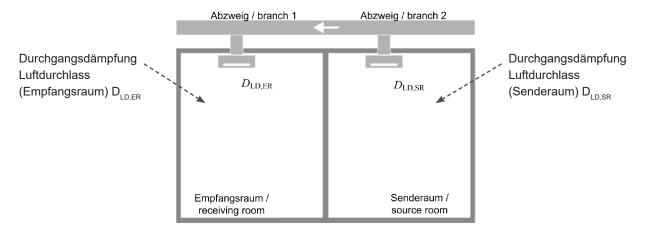
Gleichzeitig ist der im Bodenluftdurchlass integrierte Schalldämpfer bei der Reduzierung des noch im Kanalnetz befindlichen Anlagengeräusches sehr wirksam.

Die wirksame Schallpegelminderung des Bodenluftdurchlasses kann unter anderem durch die Angabe des Durchgangsdämpfungsmaßes des Luftdurchlasses D_{LD} bewertet werden. Mit der Kenntnis der Durchgangsdämpfung kann der Planer z.B. die Auslegung des Schalldämmmaßes des Luftweges bzw. der Norm-Flankenschallpegeldifferenz gemäß VDI 2081 berechnen.

Fall 1: Reduzierung von Strömungsgeräuschen im Luftkanalnetz

Exemplarischer Vergleich der Durchgangsdämpfung (INDULFOOR) mit der Einfügungsdämpfung eines klassischen Rohrschalldämpfers

	Hz	63	125	250	500	1.000	2.000	4.000	
INDULFLOOR Durchgangsdämpfung D _{LD,ER (Skala 4)}	dB	14	17	16	30	34	37	38	-
Klassischer Rohrschalldämpfer (L1000, DN100, Packungsdicke 25)	dB	1	5	9	17	30	42	38	-

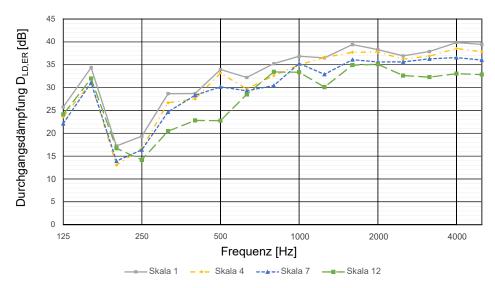


DURCHGANGSDÄMPFUNG

Fall 2: Reduzierung der Schallübertragung zwischen zwei Räumen

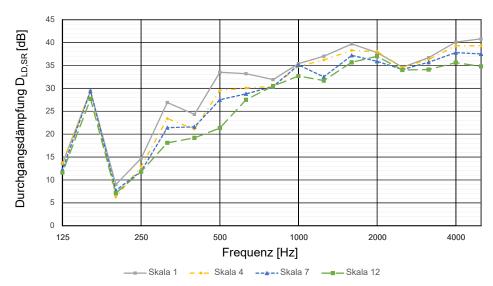
Für die Berechnung der Schallübertragung bzw. die Berechnung der Gesamtdämpfung zwischen zwei Räumen (Telefonieschallübertragung) muss die Durchgangsdämpfung der Bauteile für zwei Schallrichtungen eingesetzt werden (VDI 2081-Blatt 1:2022):

- Durchgangsdämpfung von der Luftleitung in den Raum ($\mathsf{D}_{\mathsf{LD.ER}}$)
- Durchgangsdämpfung vom Raum in den Luftdurchlass und die Luftleitung (D_{LD,SR})


Ein Übertragungsweg von zwei Luftdurchlässen mit angeschlossener Luftleitung zwischen zwei Räumen.

Mit dem Einsatz des Bodenluftdurchlasses INDULFLOOR und seiner hohen Durchgangsdämpfung kann in den meisten Fällen auf zusätzliche Telefonieschalldämpfungsmaßnahmen für den Luftweg zwischen den Räumen verzichtet werden.

Durchgangsdämpfung Luftdurchlass Empfangsraum



f [Hz]	D _{LD,ER} [dB]					
	Skala 1	Skala 4	Skala 7	Skala 12		
50	18,1	17,9	17,3	18,8		
63	14,9	14,3	13,9	15,2		
80	12,8	11,8	11,7	13,0		
100	13,1	12,9	11,4	13,3		
125	25,7	23,6	22,1	24,1		
160	34,4	31,1	31,1	32,0		
200	17,2	13,0	13,9	16,7		
250	19,4	16,7	16,4	14,2		
315	28,7	26,7	24,7	20,5		
400	28,7	27,5	28,3	22,8		
500	34,0	33,2	30,2	22,8		
630	32,2	29,7	29,3	28,5		
800	35,2	32,6	30,4	33,4		
1000	36,9	35,0	35,3	33,4		
1250	36,5	36,6	32,9	30,1		
1600	39,4	37,7	36,1	34,9		
2000	38,3	37,8	35,6	35,1		
2500	36,9	36,2	35,6	32,6		
3150	37,9	36,9	36,3	32,3		
4000	39,9	38,6	36,6	33,1		
5000	39,4	37,8	36,0	32,8		

Durchgangsdämpfung Luftdurchlass Senderaum

f [Hz]	D _{LD.SR} [dB]					
	Skala 1	Skala 4	Skala 7	Skala 12		
50	0,3	-1,7	-0,4	2,2		
63	-1,8	-1,9	-2,4	-3,1		
80	-2,4	-1,5	-1,3	-2,1		
100	-0,5	0,9	0,3	-0,5		
125	13,6	13,7	12,3	11,6		
160	29,4	29,5	29,4	27,7		
200	9,0	6,3	7,7	7,1		
250	14,7	12,9	11,9	11,8		
315	26,9	23,4	21,4	18,1		
400	24,3	21,1	21,6	19,2		
500	33,5	29,5	27,5	21,3		
630	33,2	30,1	28,8	27,5		
800	31,9	30,4	30,4	30,5		
1000	35,4	34,8	35,1	32,7		
1250	37,0	36,2	32,5	31,7		
1600	39,7	38,3	37,2	35,7		
2000	37,8	38,0	35,9	37,0		
2500	34,6	34,6	34,1	34,0		
3150	36,7	36,3	35,7	34,1		
4000	40,1	39,3	37,8	35,6		
5000	40,8	39,3	37,5	34,8		

Mit Erscheinen dieser Druckschrift verlieren alle früheren Versionen der Technischen Information ihre Gültigkeit.