

Schallschutz und Raumakustik mit Knauf

Trockenbau-Systeme

SS01.de Knauf Bauphysik

Bauphysik 01/2019

Schallschutz mit Knauf Grundlagen

Inhalt

Nutzungshinweise	
Hinweise	3
Hinweise zum Dokument	3
Quellennachweis	3
Grundlagen	
Lärmimmission, Schallschutzmaßnahme und Kennwerte	5
Das Gebäude im Schallfeld	
Relevante Frequenzbereiche	6
Schall und Schallpegel	7
Kenngrößen der Bauakustik	7
Wichtige schalltechnische Begriffe	
Bauakustik – Luftschall	7
Bauakustik – Trittschall	11
Bauakustik – Spektrum-Anpassungswerte	12
Schalltechnisches Verhalten von Bauteilen	
Direktschalldämmung	14
Schallübertragungswege	18

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Weitere Broschüren des Knauf Schallschutzordners:

- Anforderungen an die Bauteile SS02.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Innenwände SS04.de
- Decken SS05.de
- Außenbauteile SS06.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Angewendete Normen und Richtlinien:

- VDI 4100:2012-10
- Beiblatt 1 zu DIN 4109:1989
- VDI 4100:2007-08
- DIN EN ISO 717-1:2013-06
- DIN EN ISO 717-2-2006-11
- DIN EN ISO 10140-2:2010-12
- DIN EN ISO 10140-3:2010-12
- DIN 4109-1:2018-01
- DIN 4109-2:2018-02
- DIN 4109-31:2016-07
- DIN 4109-32:2016-07
- DIN 4109-33:2016-07
- DIN 4109-34:2016-07
- DIN 4109-35:2016-07
- DIN 4109-36:2016-07

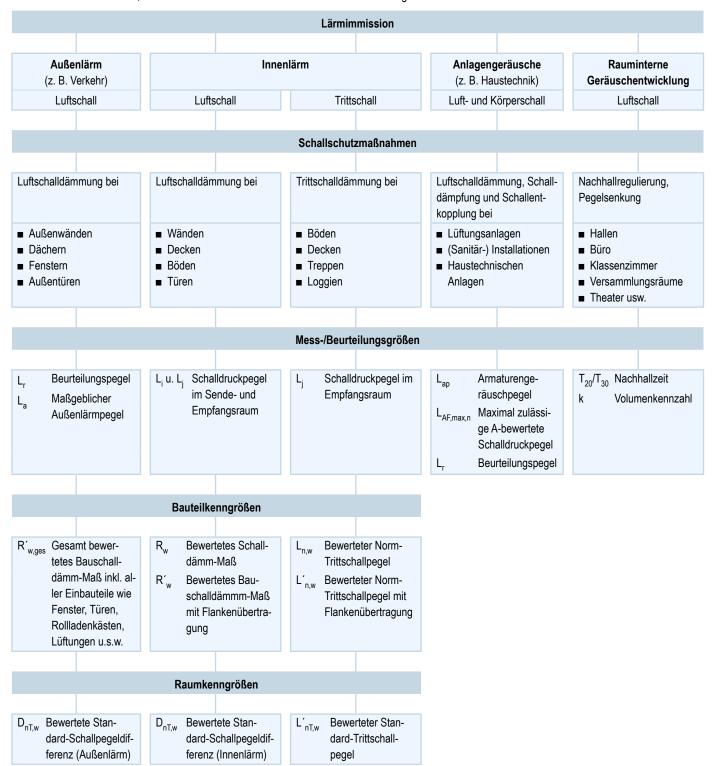
Quellennachweis

- Zürchner, Frank Bau und Energie: Leitfaden für Planung und Praxis Vdf, Hochschul- Verlagan der ETH Zürich; Teubner-Verlag Stuttgart, 1998
- [2] Hohmann; Setzer; Wehling: Bauphysikalische Formeln und Tabellen –
 Wäremschutz Feuchteschutz Schallschutz Werner Verlag 2004
- [3] Krämer, Pfau, Tichelmann Sanierung mit Trockenbau Intelligente Lösungen für Brand-, Schall-, Wärme- und Feuchteschutz mit Trockenbausystemen Knauf Gips KG Iphofen, 2010

Grundlagen

Lärmimmission, Schallschutzmaßnahme und Kennwerte

Das Gebäude im Schallfeld


Schallschutzmaßnahmen

Ein umfassender Schallschutz wird im Wesentlichen bestimmt durch:

- Abschottung des Außenlärmes zum Gebäudeinneren
- Reduzierung der Schallübertragung von einem Raum zum anderen im Gebäudeinneren
- Verhinderung der Schallübertragung bei starker Lärmemission im Gebäude (Industrielärm, Diskotheken) nach außen
- Schaffung eines optimalen "akustischen Raumklimas"

Die drei erstgenannten Maßnahmen werden im Rahmen von Bauakustik/Schallimmissionsschutz und letztere in der Raumakustik behandelt. Die Zusammenhänge zwischen Lärmquelle-Maßnahmen-Kennwerte werden aus Abb. GS. 1 deutlich.

Abb. GS. 1: Lärmimmission, Schallschutzmaßnahme und Kennwerte der Schalldämmung

Relevante Frequenzbereiche

Hören und Hörbereich

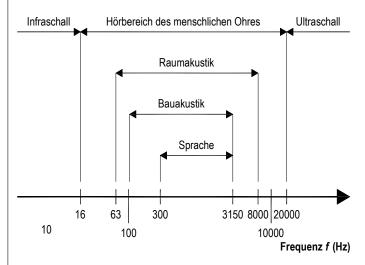
Hören ist die subjektive Wahrnehmung des Schalles. Das menschliche Ohr kann Schallwellen nur in einem Frequenzbereich von ca. 16 bis 20000 Hz wahrnehmen, wobei die Empfindlichkeit von der Frequenz und der Lautstärke des einfallenden Schalles abhängt.

Die Hörfläche wird dabei definiert durch den Bereich der kleinsten noch wahrnehmbaren Schallpegel (Hörschwelle) und der maximalen noch aufnehmbaren Schallpegel (Schmerzschwelle) (Abb. GS. 2).

Der Hörbereich differiert bei verschiedenen Menschen und nimmt mit zunehmenden Alter ab. Schwingungen unter 16 Hz empfindet der Mensch als Erschütterungen (Infraschall). Frequenzen deutlich über 20000 Hz (Ultraschall) werden von den Menschen in der Regel nicht mehr wahrgenommen.

Abb. GS. 2: Hörfläche mit eingetragenem Emissionsfeld aus Sprache und Musik [1]

Schall- druck (Pa)	Schall- pegel (dB)	
2 · 10 ¹	120	Schmerzschwelle (120 Phon)
2	100	Hörfläche
2 · 10 -1	80	Musik
2 · 10 -2	60	Sprache
2 · 10 -3	40	Spracile
2 · 10 -4	20	Hörschwelle
2 · 10 -5	0	(3 Phon)
	20	31 63 125 250 500 1 2 4 8 16
		Frequenz (Hz bzw. kHz)


Frequenzbereiche der Bau- und Raumakustik

Ableitend aus dem Hörvermögen des Menschen und der frequenzabhängigen Empfindlichkeit des menschlichen Ohres (Abb. GS. 2) wurde in der Bauakustik als besonders zu schützender Bereich ein Frequenzspektrum zwischen 100 und 3150 Hz als Regelfall festgelegt. Bei diesen Frequenzen ist das menschliche Ohr am empfindlichsten und der Lautstärkeanteil üblicher Geräusche am höchsten.

Für spezielle Anwendungsfälle (z. B. hoher Anteil tieffrequenter Geräusche bei Straßenlärm, breites lautes Spektrum in Kinos) kann für die Bewertung der Schalldämmung dieser Bereich ergänzt und ein Frequenzspektrum von 50 bis 5000 Hz zu Grunde gelegt werden.

Abb. GS. 3: Diagramm mit relevanten Frequenzbereichen für Bau- und Raumakustik [2]

Schall und Schallpegel

Unter Schall versteht man mechanische Schwingungen und Wellen, die sich als **Luftschall** (in Luft) oder als **Körperschall** (in festen Stoffen) ausbreiten. Die Körperschall-Anregung von Decken und Treppen wird als **Trittschall** bezeichnet. Das logarithmische Maß für die Schallstärke ist der Schallpegel L, angegeben in Dezibel dB. Ableitend aus vorgenannten Bezeichnungen wird die Dämmung der Schallwellen, i. d. R. zwischen zwei Räumen, als Luftschall- oder Trittschalldämmung bezeichnet.

Abb. GS. 4: Bauakustischer Prüfstand zur Messung der Luftschalldämmung [Knauf Gips KG]

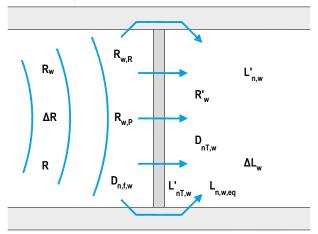
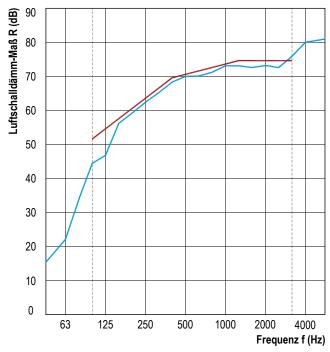


Abb. GS. 5: Bauakustischer Prüfstand zur Messung der Trittschalldämmung [Knauf Gips KG]

Kenngrößen der Bauakustik

Abb. GS. 6: Kenngrößen der Bauakustik



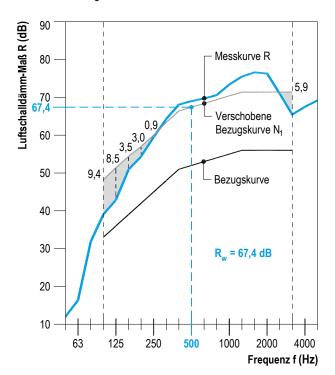
In der Bauakustik muss zwischen einer Vielzahl von Kenngrößen unterschieden werden. Jeder Planer und Fachunternehmer, der sich mit dem Thema des Schallschutzes beschäftigt sollte die Unterschiede der einzelnen Größen kennen und den Einfluss abschätzen können. Das ist insbesondere dann wichtig, wenn ein ausgeschriebener Wert erfüllt werden muss. Im Folgenden werden die wichtigsten bauakustischen Kenngrößen aufgeführt und deren Unterschiede zueinander erläutert.

Luftschalldämm-Maß R

Das Luftschalldämm-Maß R ist eine frequenzabhängige Größe und wird im Frequenzbereich zwischen 100 bis 3150 Hz angegeben. Häufig wird der Frequenzbereich auf 50 bis 5000 Hz erweitert, um das Verhalten des geprüften Bauteils außerhalb des Bewertungsbereichs für den Einzahlwert (100 bis 3150 Hz) zu beurteilen. Die Messung der Luftschalldämmung von Bauteilen in Prüfständen erfolgt nach DIN EN ISO 10140-2.

Abb. GS. 7: In einem Prüfstand gemessenes Luftschalldämm-Maß R

Frequenzabhängiges Luftschalldämm-Maß R
Verschobene Bezugskurve zur Ermittlung des Einzahlwertes


Bauakustik - Luftschall

Bewertetes Luftschalldämm-Maß $R_{\rm w}$

Der Index "w" beim bewerteten Schalldämm-Maß weist dabei darauf hin, dass es sich um eine frequenzunabhängige, bewertete Größe handelt, die als Einzahlangabe angegeben wird. Dabei handelt es sich um das Schalldämm-Maß des betrachteten Bauteils alleine, ohne Schallübertragungen über flankierende Bauteile. In der Regel wird diese Größe auf eine Nachkommastelle genau angegeben und für die Prognose des zu erreichenden Schalldämm-Maßes im eingebauten Zustand unter Berücksichtigung sämtlicher Schallübertragungswege nach DIN 4109-2:2018 herangezogen. Die Bestimmung des Einzahlwerts erfolgt nach DIN EN ISO 717-1 aus dem frequenzabhängigen Schalldämm-Maß R durch Verschiebung einer Bezugskurve. Das Verfahren zur Ermittlung von R_w wird detailliert in Abb. GS. 8 dargestellt.

Abb. GS. 8: Bestimmung des bewerteten Schalldämm-Maßes $R_{\rm w}$ aus einer gemessenen Schalldämmkurve

► Gut zu wissen

Je höher das bewertete Schalldämm-Maß ${\rm R}_{\rm w}$ ist, desto besser ist die Luftschalldämmung des Bauteils.

Verschiebungsregel Luftschalldämm-Maß

- Zur Ermittlung des Einzahlwertes des Schalldämm-Maßes R_w wird die frequenzabhängige Bezugskurve nach DIN EN ISO 717-1:2013-06 in 1/10 dB Schritten so lange verschoben, bis die Summe der ungünstigen Abweichungen (positive Werte aus der Differenz N₁-R) geteillt durch die Anzahl der Terzen (16) kleiner oder gleich 2 dB ist, jedoch möglichst nahe 2 dB liegt.
- Das bewertete Schalldämm-Maß R_w (Bauteil ohne Nebenwege) bzw. R'_w (Bauteil mit Nebenwegen) entspricht dem Wert der verschobenen Bezugskurve N₁ bei 500 Hz (siehe Diagramm).

Diagrammbeispiel:

W112.de Knauf Metallständerwand

- Einfachständerwerk CW 75, Ständerachsabstand 625 mm
- Beplankung: 12,5 mm Silentboard + 12,5 mm Diamant
- Dämmung: 60 mm Thermolan TI 140 T

Berechnung der Summe der ungünstigen Abweichungen

9.4 + 8.5 + 3.5 + 3.0 + 0.9 + 0.4 + 5.9 = 31.6 dB

Anzahl der betrachteten Terzfrequenzen von 100 bis 3150 Hz: 16 31.6:16=1.98~dB

Frequenz f	Hz	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
Schalldämm-Maß R	dB	39,0	42,9	50,9	54,4	59,5	64,3	68,1	69,0	69,7	70,6	73,4	75,5	76,6	76,3	71,0	65,5
Bezugskurve	dB	33	36	39	42	45	48	51	52	53	54	55	56	56	56	56	56
Verschobene Bezugskurve N ₁	dB	48,4	51,4	54,4	57,4	60,4	63,4	66,4	67,4	68,4	69,4	70,4	71,4	71,4	71,4	71,4	71,4
Abweichungen N ₁ - R	dB	9,4	8,5	3,5	3,0	0,9	-0,9	-1,7	-1,6	-1,3	-1,2	-3,0	-4,1	-5,2	-4,9	0,4	5,9

Prüfstandswert des bewerteten Luftschalldämm-Maßes R_{wP}

Der Prüfstandswert $R_{w,P}$ entspricht dem bewerteten Luftschalldämm-Maß R_w und wird zur Prognose des zu erreichenden Schalldämm-Maßes im eingebauten Zustand nach DIN 4109-2:2018 benötigt. In Knauf-Dokumenten/ Unterlagen wird der Prüfstandswert als R_w angegeben, da zukünftig nach dem aktuellen Verfahren der 2016 veröffentlichten DIN 4109 nur noch mit den Prüfstandswert gearbeitet wird und keine Differenzierung zwischen Rechenwert und Prüfstandswert stattfindet.

Rechenwert des bewerteten Luftschalldämm-Maßes R_{w.R}

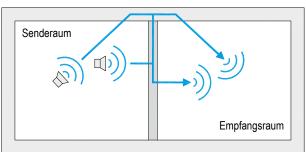
Der Rechenwert des bewerteten Luftschalldämm-Maßes wird aus dem abgerundeten Prüfstandswert minus 2 dB gebildet. Diese Größe wird zur Prognose des zu erreichenden Schalldämm-Maßes im eingebauten Zustand unter Berücksichtigung der Flankenübertragung nach der "alten" DIN 4109:1989 verwendet.

Die aktuelle DIN 4109:2016/2018 ist in den folgenden Bundesländern baurechtlich eingefügt (Stand 14.11.2018):

- Baden Württemberg
- Bayern
- Berlin
- Brandenburg
- Bremen

- Hamburg
- Hessen
- Sachsen
- Sachsen-Anhalt
- Thüringen

In den restlichen Bundesländern muss bis zur Einführung der aktuellen DIN 4109 in die Landesbauordnung nach der alten DIN 4109:1989 gearbeitet werden. Daher werden für eine angemessene Übergangszeit sowohl die Rechenwerte, als auch die Prüfstandswerte in unseren Knauf Unterlagen aufgeführt.


Bewertetes Bau-Schalldämm-Maß R'_w

Der Strich über dem R (gesprochen: R-Strich w) gibt den Hinweis darauf, dass es sich bei dieser Größe um das Schalldämm-Maß des betrachteten Bauteils im eingebauten Zustand handelt. Das heißt, die flankierenden Bauteile werden mit berücksichtigt. Bei Messungen am Bau findet die Berücksichtigung über die Anregung sämtlicher an der Schallübertragung beteiligten Bauteile und Einbauten statt (siehe hierzu auch Abb. GS 14). Bei Prognosen des zu erwartenden Luftschalldämm-Maßes im eingebauten Zustand werden die flankierenden Bauteile in Abhängigkeit der Bauart (Massivbau, Trockenbau, Mischbau) mittels der bewerteten Flankendämm-Maße $R_{ij,w}$ bzw. der bewerteten Norm-Flankenpegeldifferenz $D_{n,f,w}$ berücksichtigt. Näheres dazu in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de.

Bewertetes Flankendämm-Maß $R_{ij,w}$

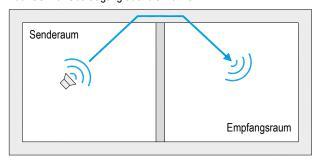

Das bewertete Flankendämm-Maß ist eine Einzahlgröße zur Beschreibung des Schalldämm-Maßes für die flankierende Übertragung über unterschiedliche Übertragungswege. Im reinen Massivbau müssen zur Prognose des Schalldämm-Maßes im eingebauten Zustand 12 Schallübertragungswege über die flankierenden Wege berücksichtigt werden (siehe Abb. GS 9 Übertragungswege über Decke, Boden und Wände).

Abb. GS. 9: Alle Übertragungswege anzusetzen auf die Außenwand, Innenwand, Decke und Boden

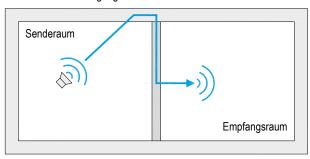

Weg 1

Abb. GS. 10: Übertragung über die Flanke

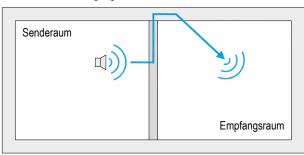

Weg 2

Abb. GS. 11: Übertragung über die Flanke und Trennbauteil

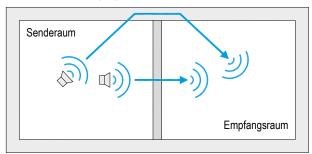

Weg 3

Abb. GS. 12: Übertragung über das Trennbauteil und Flanke

Bei Mischbauweisen aus einem Trennbauteil in Leichtbauweise und den flankierenden Bauteilen in Massivbauweise werden hingegen lediglich vier Flankenübertragungswege betrachtet (siehe Abb. GS 13 Übertragung über das trennende Bauteil und Flankenbauteil über Decke, Boden und Wände).

Abb. GS. 13: Übertragung über das trennende Bauteil und Flankenbauteil

Wichtige schalltechnische Begriffe

Bauakustik - Luftschall

Bewertete Norm-Flankenpegeldifferenz $D_{n,f,w}$

Die bewertete Norm-Flankenpegeldifferenz wird zur Beschreibung der Schallübertragung über flankierende Bauteile im Trocken,- Leicht- und Holzbau, sowie bei durchlaufenden Vorsatzschalen und Unterdecken vor bzw. unter Massivbauteilen angesetzt. Durch Addition von Korrektursummanden die ihrerseits von den geometrischen Abmessungen des Empfangsraumes sowie der Trennwandfläche abhängig sind, wird die bewertete Norm-Flankenpegeldifferenz in das bewertete Flankenschalldämm-Maß R_{Ff,w} umgerechnet, das zur Prognose des bewerteten Bau-Schalldämm-Maßes benötigt wird. Bei diesem Rechenansatz werden lediglich 4 Schallübertragungswege über die flankierenden Bauteile sowie die Übertragung direkt über das trennende Bauteil betrachtet. Näheres zu den Berechnungen ist in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de beschrieben.

Bewertete Verbesserung des Schalldämm-Maßes ΔR_w durch Vorsatzkonstruktionen

Die Verbesserung durch Vorsatzkonstruktionen kann gemessen, sowie prognostiziert werden. Dabei gilt der Grundsatz:

Je besser das Grundbauteil, desto geringer die Verbesserung durch Vorsatzkonstruktionen.

Das heißt, dass ein angegebenes Verbesserungsmaß nicht pauschal auf jede beliebige Situation angesetzt werden kann. Bei den Prognosen des Verbesserungsmaßes wird das Schalldämm-Maß des Grundbauteils mit einbezogen. In Abhängigkeit der ermittelten Resonanzfrequenz kann das Verbesserungsmaß im Anschluss berechnet werden. Näheres zur Berechnung des Verbesserungsmaßes durch Vorsatzschalen kann dem in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de entnommen werden.

Bei gemessenen Verbesserungsmaßen wird oftmals die Größe $\Delta R_{w,heavy}$ angegeben. Nach DIN EN ISO 10140-5 Anhang B gilt dieses Verbesserungsmaß für Massivbauteile mit einer flächenbezogenen Masse von 350 kg/m² \pm 50 kg/m².

Bewertete Standard-Schallpegeldifferenz $D_{nT,w}$

Die bewertete Standard-Schallpegeldifferenz lässt sich aus dem bewerteten Bau-Schalldämm-Maß R'_w sowie der Geometrie des Empfangsraumes wie folgt ableiten:

$$D_{nT,w} = R'_{w}-10lg\left(\frac{3,1S}{V_{E}}\right)dB \tag{1}$$

Mit

S = Größe der Trennfläche des betrachteten Trennbauteils in m²

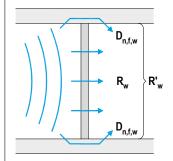
V_F = Volumen des Empfangsraumes in m³

Die VDI 4100:2012 gibt Vorschläge für den erhöhten Schallschutz im Wohnungsbau (privatrechtlich zu vereinbaren) und bezieht sich bei den Empfehlungen auf die bewertete Standard-Schallpegeldifferenz. Hintergrund zur Abweichung der Anforderungen an ein bewertetes Bau-Schalldämm-Maß wie in DIN 4109 angegeben ist es, den Schallschutz zwischen zwei Räumen nicht mehr ausschließlich auf Bauteilkenngrößen zu reduzieren, sondern Schallschutz in Abhängigkeit der Raumgrößen zu benennen. Dieser Gedanke wurde bereits im Normentwurf zur E DIN 4109:2006 aufgenommen, jedoch aufgrund berechtigter Einwände wieder verworfen.

Die Abhängigkeit der bewerteten Standard-Schallpegeldifferenz von der Raumgröße hat zur Folge, dass bei größeren Raumvolumen das bewertete Schalldämm-Maß der Trennwand im Vergleich zu kleineren Räumen geringer werden kann um eine gleichbleibende bewertete Standard-Schallpegeldifferenz zu erreichen. Der Hintergrund dieser Herangehensweise ist die Annahmen, dass sich die Schallenergie in einem großen Raum auf ein größeres Volumen verteilt und somit bei gleichem Schallschutz das Schalldämm-Maß der Trennwand verringert werden kann. Einen Überblick über diesen Zusammenhang zeigt die Tabelle GS.1

Tab. GS. 1: Ableitung von Bauteilkenngrößen aus Schallschutz-Anforderungen an Bauteile als Raumkenngrößen in Abhängigkeit der Raumtiefe (VDI 4100) Luftschall

Empfehlung D _{nT,w} (SSt II) Mehrfamilienhaus nach VDI 4100:2012-10	Raumtiefe	Erforderliches R' _w
	3,1 m	\geq 59 dB (59 ± 0)
≥ 59 dB	2,0 m	≥61 dB (59 + 2)
	8,0 m	≥ 55 dB (59 - 4)


Tab. GS. 2: Ableitung von Bauteilkenngrößen aus Schallschutz-Anforderungen an Bauteile als Raumkenngrößen in Abhängigkeit des Raumvolumens (VDI 4100) Trittschall

Empfehlung L $_{\rm nT,w}$ (SSt II) Mehrfamilienhaus nach VDI 4100:2012-10	Raumvo- lumen	Erforderliches L´ _{n,w}
	32 m³	\leq 44 dB (44 ± 0)
≤44 dB	24 m³	≤ 42 dB (44 - 2)
	120 m³	≤50 dB (44 + 6)

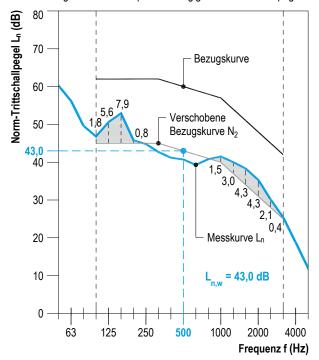
Luftschalldämmung zwischen zwei Räumen

Trennung der zwei Räume mit leichter Ternnwand

Abb. GS. 14: Luftschalldämmung zwischen zwei Räumen [3]

- Bewertetes Schalldämm-Maß ohne Schallübertragung über flankierende Bauteile
- **D**_{n,f,w} Bewertete Norm-Flankenpegeldifferenz
 - Bewertetes Bau-Schalldämm-Maß mit Schallübetragung über flankierende Bauteile

Bewerteter Norm-Trittschallpegel $L_{n,w}$


Der bewertete Norm-Trittschallpegel beschreibt die Trittschalldämmung einer Decke alleine ohne Schallübertragung über die flankierenden Wände. Er wird nach DIN EN ISO 717-2 aus einem in einem bauakustischen Prüfstand (Abb. GS 5) gemessenen, frequenzabhängigen Norm-Trittschallpegel im Frequenzbereich von 100 bis 3150 Hz durch Bewertung mittels einer verschobenen Bezugskurve (Abb. GS 15) ermittelt. Im Gegensatz zur Luftschalldämmung wird bei der Trittschalldämmung keine Schallpegeldifferenz zwischen Senderaum und Empfangsraum als Kenngröße festgelegt, sondern ein Schalldruckpegel im Empfangsraum, der durch eine genormte Anregequelle (Norm-Hammerwerk) entsteht.

Auch beim bewerteten Norm-Trittschallpegel wird wie beim bewerteten Luftschalldämm-Maß R_w zwischen den Angaben des Prüfstandswertes $L_{n,w,P}$ bzw. $L_{n,w}$ und dem Rechenwert $L_{n,w,R}$ unterschieden.

Bewerteter Norm-Trittschallpegel im Bau L'_{n,w}

In Analogie zum Luftschalldämm-Maß wir auch beim bewerteten Norm-Trittschallpegel zwischen der Angabe für die Decke alleine und der Angabe der Decke im eingebauten Zustand unterschieden. Der "Strich" über dem L weist dabei deutlich darauf hin, dass es sich um den bewerteten Norm-Trittschallpegel im Bau unter Berücksichtigung der Schallübertragung über die flankierenden Bauteile handelt. Er kann entweder am Bau gemessen werden, oder durch genormte Verfahren und/oder Erfahrungen prognostiziert werden. Näheres zur Ermittlung des bewerteten Norm-Trittschallpegels am Bau kann in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de entnommen werden.

Abb. GS. 15: Bestimmung des bewerteten Trittschallpegels aus einer gemessenen frequenzabhängigen Normtrittschallpegelkurve [1]

Aquivalenter bewerteter Norm-Trittschallpegel von Massivdecken $\mathbf{L}_{\mathbf{n.w.ea}}$

Diese Größe beschreibt den Norm-Trittschallpegel von Massivdecken ohne Flankenübertragung und ohne Deckenauflage oder Unterdecke. Der äquivalente bewertete Norm-Trittschallpegel dient als Eingangswert für die Prognose des Norm-Trittschallpegels von Massivdecken mit Deckenauflagen und/oder Unterdecken $L_{n,w}$ und im Weiteren als Eingangsgröße zur Prognose des bewerteten Norm-Trittschallpegels im Bau $L^{'}_{n,w}$ unter Berücksichtigung der Flankenübertragung.

Bewertete Trittschallminderung ΔL_{w}

Die bewertete Trittschallminderung ist eine Einzahlangabe zur Beschreibung der Verbesserung des äquivalenten bewerteten Norm-Trittschallpegels durch Deckenauflagen und/oder Unterdecken. Durch eine Addition des äquivalenten bewerteten Norm-Trittschallpegels mit der bewerteten Trittschallminderung erhält man den bewerteten Norm-Trittschallpegel $L_{\rm n,w}$ der Decke alleine ohne Nebenwegübertragung über flankierende Bauteile.

$$L_{n,w} = L_{n,w,eq} + \Delta L_{w} \text{ in dB}$$
 (2)

Gut zu wissen

Je niedriger der bewertete Norm-Trittschallpegel L_{n,w} im Empfangsraum ist, desto besser ist die Trittschalldämmung des trennenden Bauteils.

Verschiebungsregel Norm-Trittschallpegel:

- Um den Einzahlwert des Norm-Trittschallpegels L_{n,w} zu bestimmen, ist die Bezugskurve nach DIN EN ISO 717-2:2013 in 1/10 dB Schritte so lange zu verschieben, bis die Summe der ungünstigen Abweichungen (positive Werte aus der Differenz N₁-R) geteilt durch die Anzahl der Terzen (16) kleiner oder gleich 2 dB ist, jedoch möglichst nahe 2 dB liegt.
- Der Einzahlwert des bewerteten Norm-Trittschallpegels L_{n,w} (reines Bauteil) bzw. L'_{n,w} (Bauteil inkl. Nebenwege) entspricht dem Wert der verschobenen Bezugskurve N₂ bei 500 Hz (siehe Diagramm).

Diagrammbeispiel:

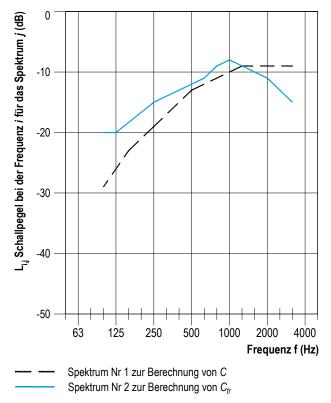
F231.de Knauf Fließestrich auf Dämmschicht

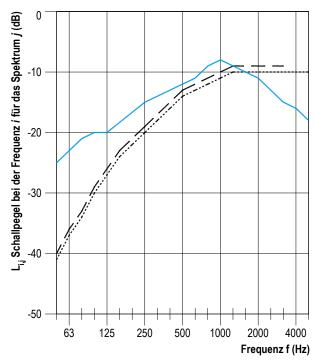
- 35 mm Fließestrich FE 50 auf Schrenzlage
- 25 mm Heraklith + 25 mm Knauf Insulation TP 25-5
- 140 mm Stahlbeton

Berechnung der Summe der ungünstigen Abweichungen

1.8 + 5.6 + 7.9 + 0.8 + 1.5 + 3.0 + 4.3 + 4.3 + 2.1 + 0.4 = 31.7 dB Anzahl der betrachteten Terzfrequenzen von 100 bis 3150 Hz: 16 31.7: 16 = 1.98 dB

Frequenz f	Hz	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	3150
Norm-Trittschallpegel L _n	dB	46,8	50,6	52,9	45,8	44,8	42,7	41,2	40,7	39,3	40,8	41,5	40,0	38,3	35,3	30,1	25,4
Bezugskurve	dB	62	62	62	62	62	62	61	60	599	58	57	54	51	48	45	52
Verschobene Bezugskurve N ₂	dB	45,0	45,0	45,0	45,0	45,0	45,0	44,0	43,0	42,0	41,0	40,0	37,0	34,0	31,0	28,0	25,0
Abweichungen L _n - N ₂	dB	1,8	5,6	7,9	0,8	-0,2	-2,3	-2,8	-2,3	-2,7	-0,2	1,5	3,0	4,3	4,3	2,1	0,4


Wichtige schalltechnische Begriffe



Spektrum-Anpassungswerte

Abb. GS. 16: Schallpegelspektren zur Berechnung der Spektrum-Anpassungswerte für Terzbandwerte von 100 bis 3150 Hz (Grafik links) und für den erweiterten Frequenzbereich von 50 bis 5000 Hz (Grafik rechts).

--- Spektrum Nr 1 zur Berechnung von C: 50 bis 5000 Hz und 100 bis 5000 Hz

Spektrum Nr 1 zur Berechnung von C: 50 bis 3150 Hz
 Spektrum Nr 2 zur Berechnung von C_{tr}

Spektrum-Anpassungswerte

Mit den Spektrum-Anpassungswerten C und C_{tr} kann die Schalldämmung von verschiedenen Konstruktionen im Bereich 100 bis 3150 Hz (bei Erfordernis auch mit einem erweiterten Frequenzbereich von 50 bis 5000 Hz) unter verstärkter Berücksichtigung spezifischer Lärmarten (unterschiedlichen Geräuschspektren) beurteilt und für spezielle Einsatzfälle in die Bewertung der Schalldämmung der Bauteile mit einbezogen werden.

Die Einzahlkennwerte zur Beschreibung der Schalldämmqualität von Bauteilen werden unter Einbeziehung der Spektrum-Anpassungswerte wie folgt angegeben:

- \blacksquare R_w (C, C_{tr}) in dB
- $L_{n,w}(C_l)$ in dB

Nach DIN EN ISO 717-1:2013-06 berücksichtigt im Luftschall der Wert C z. B. speziell das spezifische Lärmspektrum von Wohnlärm, der Wert $C_{\rm tr}$ z. B. den größeren Tieftonanteil innerstädtischen Straßenlärms. Im Bereich Trittschall korrigiert der Anpassungswert $C_{\rm l}$ insbesondere tieffrequente Störungen.

Knauf-Empfehlung:

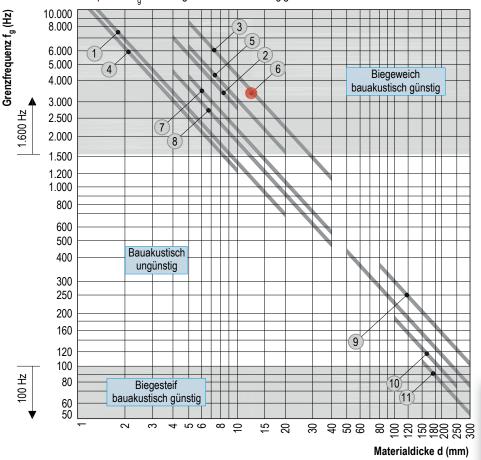
Durch zahlreiche wissenschaftliche Untersuchungen und Studien sowie der Möglichkeit subjektiver Hörtests in den hauseigenen Prüfständen hat sich herausgestellt, dass die Bewertungsgröße $R_{\rm w}$ und $R^{\prime}_{\rm w}$ das subjektive Empfinden bei der Anregung von Wohnungstrennwänden mittels wohnüblicher Geräusche sehr gut wiedergibt. Eine Korrektur mittels der Spektrum-Anpassungswerte ist demnach nicht notwendig. Eine teilweise angedachte Bewertung der Luftschalldämmung ab 50 Hz bei wohnüblicher Geräuschanregung wie es beispielsweise der Spektrum-Anpassungswert $C_{50-3150}$ und $C_{\rm tr,50-3150}$ oder die Kenngröße $D_{\rm n,T,50}$ vorsieht hat sich sogar als kontraproduktiv herausgestellt, da bei Leichtbaukonstruktionen die Frequenzen 50 und 63 Hz den Einzahlwert dominieren und die für übliche Geräuschquellen notwendige Schalldämmung im Frequenzbereich ab ca. 200 Hz kaum noch relevant ist. Beim Norm-Trittschallpegel hingegen sollte aufgrund der Anregung der Decken im tieffrequenten Bereich durch das Gehen und hier insbesondere durch den Fersengang (barfüßig, mit Socken oder Schuhen mit Gummisohle)

der Spektrum-Anpassungswert C_{I,50-2500} berücksichtigt werden.

Wichtige schalltechnische Begriffe

Bauakustik – Spektrum-Anpassungswerte

Tab. GS. 3: Schallpegelspektren zur Berechnung der Spektrum-Anpassungswerte für den erweiterten Frequenzbereich


Frequenz		Schallpegel L _{i,j} (dB)								
(Hz)		Spektrum Nr. 1 zu	Spektrum Nr. 2 von C _{tr} für jeden							
	C ₅₀	-3150	C ₅₀	-5000						
	Terz	Oktav	Terz	0-5000 Oktav	Terz	Oktav				
50	-40	_	-41	-	-25	_	1			
63	-36	-31	-37	-32	-23	-18	2			
80	-33	_	-34	-	-21	_	3			
100	-29	_	-30	_	-20	_	4			
125	-26	-21	-27	-22	-20	-14	5			
160	-23	_	-24	_	-18	_	6			
200	-21	_	-22	_	-16	_	7			
250	-19	-14	-20	-15	-15	-10	8			
315	-17	_	-18	_	-14	_	9			
400	-15	_	-16	_	-13	_	10			
500	-13	-8	-14	-9	-12	-7	11			
630	-12	-	-13	_	-11	_	12			
800	-11	_	-12	_	-9	_	13			
1000	-10	-5	-11	-6	-8	-4	14			
1250	-9	_	-10	_	-9	_	15			
1600	-9	_	-10	_	-10	_	16			
2000	-9	-4	-10	-5	-11	-6	17			
2500	-9	_	-10	_	-13	_	18			
3150	-9	_	-10	_	-15	_	19			
4000	_	_	-10	-5	16	-11	20			
5000	_	-	-10	_	-18	_	21			

Anmerkung: Alle Pegel sind A-bewertet, und der Gesamtpegel ist auf 0 dB normiert.

Direktschalldämmung

Abb. GS. 17: Grenzfrequenzen f_a einschaliger Bauteile in Abhängigkeit von der Plattendicke und Material

- 1 Sperrholz
- 2 Holzfaserhartplatten
- 3 Holzfaserdämmplatten
- 4 Aluminium, Stahl, Glas
- 6 Gipsplatten
- Silentboard
- 7 Holzspanplatten
- 8 Faserzementplatten
- 9 Porenbeton
- 10 Kalksandstein
- 11) Beton

► Gut zu wissen

Gute Schalldämmung ist bei einschaligen Bauteilen nur mit hoher flächenbezogener Masse zu erreichen.

Direktschalldämmung

Im bauakustischen Sinne wird zwischen einschaligen und mehrschaligen (in der Praxis meist zweischaligen) Bauteilen unterschieden.

Einschalige Bauteile

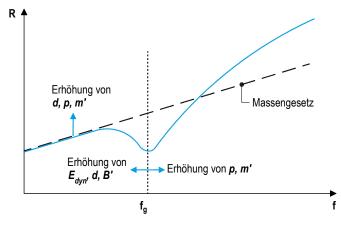
Einschalige Bauteile findet man bei:

- Bauteilen in Massivbauart (z. B. Bauteile aus Mauerwerk, Stahlbeton, massiven Rohdecken)
- Traditionell ausgefachten Fachwerkwänden (idealisiert)

Das Schalldämm-Maß ist von der flächenbezogenen Masse und der Biegesteifigkeit des Bauteils abhängig.

Einschalige Bauteile haben im Allgemeinen eine umso bessere Luftschalldämmung, je schwerer sie sind. Im Regelfall nimmt die Luftschalldämmung auch mit der Frequenz stetig zu. Nur im Bereich der Grenzfrequenz \boldsymbol{f}_g des Bauteils (Resonanz bei Übereinstimmung der Wellenlänge des Luftschalles und der Länge der freien Biegewellen des Bauteils) verschlechtert sich die Luftschalldämmung.

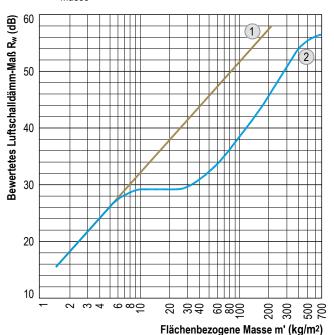
Tendenziell ist diese Verschlechterung in Abb. GS. 18 sichtbar. Die Lage des Grenzfrequenz-Einbruchs ist dabei von folgenden Faktoren abhängig:


- Dem dynamischen E-Modul E_{dyn}
 Je höher der E-Modul, desto tieffrequenter liegt der Einbruch.
- Der Dicke des Bauteils d
 Je dicker das Bauteil, desto tieffrequenter liegt der Einbruch.
- Der Biegesteifigkeit B'
 Je steifer das Bauteil, desto tieffrequenter liegt der Einbruch.
- Der Rohdichte ρ
 Je höher die Rohdichte bei gleichbleibender Bauteildicke, desto hochfrequenter liegt der Einbruch.

■ Der flächenbezogenen Masse m′

Je höher die flächenbezogene Masse bei gleichbleibender Bauteildicke, desto hochfrequenter liegt der Einbruch.

Wird die Bauteildicke, die Rohdichte und die flächenbezogene Masse erhöht, erhöht sich auch das Schalldämm-Maß des Bauteils.


Abb. GS. 18: Einflussfaktoren auf die Koinzidenzgrenzfrequenz [2]

Die Abbildung GS.19 zeigt am Beispiel von einschaligen Massivbauteilen in Kurve 2 den Einbruch des bewerteten Luftschalldämm-Maßes im mittleren Massebereich gegenüber der theoretischen Kurve aus dem Massegesetz. Im unteren Massebereich, und damit entsprechend dünn, sind die Bauteile "bauakustisch biegeweich" und im oberen Massebereich, und damit entsprechend dick, sind die Bauteile "bauakustisch biegesteif" und folgen in der Schalldämmung dem Massegesetz.

Abb. GS. 19: Schalldämmung einschaliger Bauteile in Abhängigkeit von der Masse

- 1 Theoretisches Massegesetz: R_w = 20 · log m' + 11
- 2 Schalldämmkurve für Massivbauteil, z. B. Mauerwerk, Gipsplatten, Beton (nach Gösele)

Zweischalige Bauteile

Hohe Flächenmassen zur Erreichung hoher Schalldämmungen können vermieden werden, wenn die Konstruktionen zweischalig ausgebildet werden. Dabei werden die beiden Schalen durch eine Luftschicht oder eine federnde Dämmschicht getrennt bzw. verbunden. Die konstruktiv notwendigen Verbindungen sind federnd auszubilden und sollen möglichst wenig Schallenergie übertragen. Die Konstruktion entspricht dann im bauphysikalischen Sinne einem Feder-Masse-System. Dabei werden drei Konstruktionsprinzipien entsprechend Abb. GS. 21 unterschieden. Bei zweischaligen Bauteilen hängt die Schalldämmung von den Eigenschaften der beiden Einzelschalen (= "Masse"), der Verbindung der beiden Schalen (= "Feder") und dem Dämmstoff im Hohlraum ab. Somit existieren hier, anders als bei einschaligen Bauteilen, eine Vielfalt von Einflussmöglichkeiten auf die Schalldämmung des Bauteils.

Abb. GS. 20: Qualitativer Verlauf der Schalldämmung ein- und zweischaliger Konstuktionen [1]

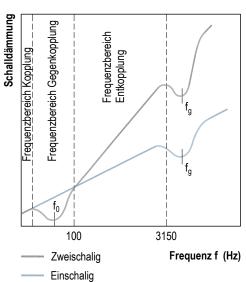
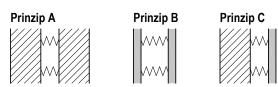



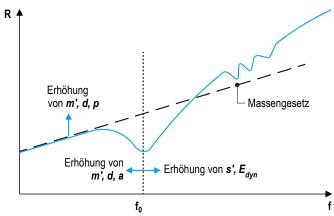
Abb. GS. 21: Konstruktionsprinzipien zweischaliger Bauteile

Eine zweischalige Konstruktion stellt ein Schwingungssystem dar, das selbst eine Eigenfrequenz (Resonanzfrequenz) \mathbf{f}_0 besitzt. In diesem Bereich schwingen beide Schalen aufgrund der Luftschallwellenanregung mit maximaler Amplitude, was einen erheblichen Einbruch der Schalldämmung bedeutet. Unterhalb des Resonanzbereichs verhält sich das Bauteil wie eines aus lediglich einer Schale mit der Masse beider Schalen. Im Bereich zwischen der Resonanzfrequenz und der Grenzfrequenz schwingen beide Schalen unabhängig voneinander. Das führt zu einem steilen Anstieg der Schalldämmung mit

18 dB pro Oktave. Die Schalldämmung ist in diesem Bereich deutlich höher im Vergleich zu einem einschaligen Bauteil mit identischer Masse.

Gut zu wissen

Mit zweischaligen Bauteilen können mit wesentlich geringerer Flächenmasse im Vergleich zu einschaligen Massivbauteilen sehr hohe Schalldämmwerte erzielt werden.


Ableitend davon sind zur Erreichung einer optimalen Schalldämmung zweischalige Bauteile so herzustellen, dass die Resonanzfrequenz und somit die Eigenresonanz des Systems deutlich unterhalb des relevanten Frequenzbereiches von 100 Hz liegt.

Die Lage der Resonanzfrequenz ist dabei von folgenden Faktoren abhängig:

- Der flächenbezogenen Masse m' der einzelnen Schalen Je größer m', desto tieffrequenter ist die Lage des Resonanzeinbruchs.
- Der Dicke der einzelnen Schalen d
 Je dicker das Bauteil, desto tieffrequenter ist die Lage des Resonanzeinbruchs.
- Dem Abstand der Schalen zueinander
 Je größer der Hohlraum zwischen den Schalen, desto tieffrequenter ist die Lage des Resonanzeinbruchs.
- Der dynamischen Steifigkeit der Dämmschicht (Luftschicht) zwischen den Schalen
 - Je höher die dynamische Steifigkeit der Dämmschicht, desto hochfrequenter ist die Lage des Resonanzeinbruchs.
- Dem dynamischen E-Modul E_{dyn} der Schalen Je größer der dynamische E-Modul, desto hochfrequenter ist die Lage des Resonanzeinbruchs.

Einer Erhöhung der flächenbezogenen Masse, der Dicke sowie der Rohdichte des Bauteils folgt die Erhöhung der Schalldämmung.

Abb. GS. 22: Einflussfaktoren auf die Resonanzfrequenz [2]

Direktschalldämmung

Zur Verhinderung sogenannter "stehender Wellen" im Hohlraum zwischen den Platten (negative Resonanzeffekte) sowie zur Reduzierung der Amplitute des Resonanzeinbruchs ist dieser mit schallabsorbierenden Materialien zu dämpfen.

Prinzip A

Kopplung von zwei schweren Schalen, i. d. R. biegesteife Schalen mit einer zwischenliegenden federnden und dämpfenden Schicht

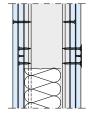
■ Reihen- und Doppelhaustrennwände

Prinzip B

Kopplung zweier biegeweicher Schalen, i. d. R. müssen aus konstruktiven Gründen Zwischenbauteile (möglichst mit guten Federeigenschaften) zur Stabilität und Verbindung der Schalen eingesetzt werden

- Trockenbauwände
- Zimmermannsmäßige Dachkonstruktion
- Holzbalkendecken

Prinzip C


Kopplung einer schweren Schale, i. d. R. biegesteifen Schale, mit einer leichten biegeweichen Schale mit zwischenliegender federnder und dämpfender Schicht

- Tragende und nichttragende Wände mit Vorsatzschale insbesondere in der Sanierung (Schall- und Wärmeschutz)
- Massivdecken mit biegeweicher Unterdecke/Deckenbekleidung und/oder schwimmendem Estrich

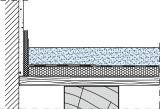
Typische Trockenbaukonstruktionen werden nach den Konstruktionsprinzipien B und C Abb. GS. 21 ausgeführt.

Metallständerwände

Metallständerwände mit Gipsplatten (Konstruktionsprinzip B) können als ein optimales Feder-Masse-System durch die konstruktive Optimierung der Ständer (Federeigenschaften) und Gipsplatten (Biegeweichheit, Plattenmasse) aufgebaut werden und bei geringster Flächenmasse der Konstruktion sehr hohe Schalldämmungen erreichen.

Beispiel Prinzip B

Abb. GS. 23: Metallständerwand

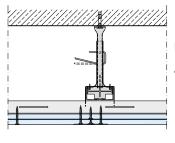

Decken

Konstruktionsbedingt gehören Massivdecken mit schwimmendem Estrich und ggf. mit leichten biegeweichen Unterdecken zu den typischen zweischaligen (oder mehrschaligen) Konstruktionen des Konstruktionsprinzips C Abb. GS. 21. Da bei den Decken neben der Luftschalldämmung eine ausreichende Trittschalldämmung realisiert werden muss, hat die "leichte Schale" an der Deckenoberseite, der Fußbodenaufbau, u. a. die Aufgabe, die direkte Körperschallübertragung über die tragende Deckenkonstruktion zu mindern. Dies wird durch geeignete Entkopplungsmaßnahmen zwischen der Rohdecke und dem Fußbodenaufbau erreicht. Durch eine zusätzliche Unterdecke wird dieser Effekt noch verstärkt. Prinzipielle Maßnahmen für Fußboden und Unterdecke unter dem Aspekt Luft- und Trittschallschutz sind:

■ Fußboden

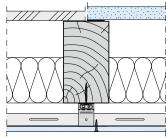
Die Ausführung eines schwimmenden Estrichs z. B. Abb. GS 24 (z. B. Fließestrich, Fertigteilestrich) mit weichfedernden Dämmschichten zwischen Fußboden und Rohdecke ist eine effektive Verbesserungsmaßnahme. Dabei ist darauf zu achten, dass Schallbrücken zwischen Raumwänden und dem schwimmenden Estrich vermieden werden, z. B. durch eine sorgfältige Ausführung der Anschlüsse an die Raumwände (Randdämmstreifen). Schalltechnisch vorteilhaft, vor allem bei leichten Deckensystemen, wirkt sich auch eine Beschwerung (z. B. Schüttung) auf der Deckenoberseite aus. Weitere

Verbesserungen der Trittschalldämmung von Decken sind durch weichfedernde Bodenbeläge (z. B. Teppich) erreichbar. Diese dürfen jedoch für den Nachweis des Mindesttrittschallschutzes im Wohnungsbau i. d. R. nicht angerechnet werden.



Beispiel Prinzip C

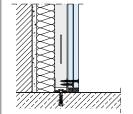
Abb. GS. 24: Trittschaldämmung von Decken


■ Deckenbekleidungen und Unterdecken

Eine weitere Minderung der Schallabstrahlung von der Deckenunterseite kann durch den Einsatz einer unterseitigen Deckenbekleidung (direkt befestigt) bzw. Unterdecke (abgehängt oder freitragend) erreicht werden, z. B. Abb. GS. 25. Übliche Deckenbekleidungen/Unterdecken bestehen aus Gipsplatten, die über eine Unterkonstruktion (Lattung, Metallprofile, Federschienen, Federbügel, Abhängung) an der Rohdecke (Massivdecke, Holzbalken, Stahlprofile) befestigt sind. Noch besser sind freitragende Deckensysteme ohne direkte Verbindung zur tragenden Deckenkonstruktion. Im Deckenhohlraum sollte generell Faserdämmstoff eingelegt sein.

Beispiel Prinzip C

Abb. GS. 25: Decke mit Unterdecke



Beispiel Prinzip B

Abb. GS. 26: Holzbalkendecke mit Unterdecke

Wände

Bei Massivwänden werden schallschutztechnisch optimale Verbesserungen mit leichten Vorsatzschalen in Verbindung mit einer Metallunterkonstruktion erreicht z. B. Abb. GS. 27 (Abb. GS. 21 Prinzip C). Besonders wirkungsvoll sind freistehende, vor der Massivwand montierte Konstruktionen. Mit "federnden" punktweisen Kopplungen an der Grundwand (verbesserte Stabilität bei "schwächeren" Profilen) werden ebenfalls sehr gute Verbesserungsmaße erzielt. Auch hier gilt, dass im Hohlraum zwischen Grundwand und Vorsatzschale zur Dämpfung ein Faserdämmstoff eingelegt wird.

Beispiel Prinzip C

Abb. GS. 27: Massivwände mit Vorsatzschale

In Tab. GS. 4 sind Maßnahmen zur positiven Beeinflussung der Schalldämmung zweischaliger Bauteile (Trockenbauwände, Vorsatzschalen, Deckenbekleidungen) beschrieben.

Direktschalldämmung

Grundprinzip	Beispiele für Maßnahmen	Zeile
Biegeweiche Schalen ausreichender flächenbezogener Masse	 ■ Günstige Masse/Struktur der Beplankung (z. B. Knauf Diamant oder Silentboard) ■ Plattendicke von Gipsplatten ≤ 20 mm ■ Mehrlagige Beplankung ■ Beschwerung (z. B. punktuell befestigtes Stahlblech) 	1
Entkopplung der Verbindung zwischen den Schalen	 Befestigung der Beplankung an der Unterkonstruktion über Querlattung, Dämmstreifen oder Federelemente Nur punktweise oder/und federnde oder gar keine Verbindung zwischen den Schalen (z. B. freistehende Vorsatzschale, Deckenbekleidung an Federschienen) Metall-Unterkonstruktion statt Holz-Unterkonstruktion Trittschalldämmstoffe geringer dynamischer Steifigkeit s' unter Estrichscheiben 	2
Abstand der Schalen	■ Größerer Schalenabstand/Deckenhohlraum	3
Hohlraumdämpfung	■ Hoher Füllgrad mit Faserdämmstoff (ca. 80%)	4

Schallübertragungswege

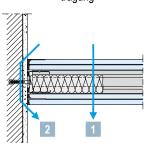
Schallübertragungswege

Voraussetzung für einen guten Schallschutz in einem Gebäude sind leistungsfähige Trennbauteile mit guter Direktschalldämmung. Beim Einbau sind schallschutztechnische Schwachstellen zu vermeiden und Nebenwegübertragungen weitgehend zu reduzieren. Dabei sind insbesondere zu beachten:

Bauteilanschlüsse und Dichtheit

Eine Grundvoraussetzung für einen guten Schallschutz sind dichte Bauteile. Dabei ist die Dichtheit sowohl in der Fläche wie im Anschlussbereich an flankierende Bauteile gefordert. Undichtigkeiten wirken wie Luftkanäle, durch die der Luftschall ohne Energieverlust von einem Raum zum anderen gelangen kann. Undichtigkeiten können somit die Schalldämmung drastisch verringern.

Bei Leichtbauteilen sind eine dichte Fugenverspachtelung in der Beplankungsfläche sowie eine Abdichtung zu Nachbarbauteilen durch Dichtungsstreifen (vorzugsweise Dichtungskitt), Verspachtelung oder Verfugung erforderlich. Dabei ist besonderes Augenmerk auf solche Bauteilanschlüsse zu legen, die im Nutzungszeitraum verstärkt zur Rissbildung neigen, wie z. B. Anschlüsse von Leichtkonstruktionen an massive Bauteile, um nachträgliche Schallschutzeinbrüche möglichst zu verhindern.


Für die schallschutztechnischen "Nachrüstungen" üblicher Mauerwerksund Fachwerkwände mit Vorsatzschalen sollte vor der Montage der Vorsatzschalen die vorhandene Wand zumindest einseitig verputzt oder die Fugen (z. B. Mauerwerksfugen, Fugen zwischen Fachwerk und Gefach) sorgfältig geschlossen werden.

Schall-Längsleitung

Bei der schalltechnischen Bemessung ist unbedingt zu beachten, dass die geforderte Schalldämmung nicht nur von dem trennenden Bauteil alleine zu erbringen ist, sondern einen resultierenden Wert darstellt, der die Schallübertragung über Nebenwege mit einbezieht.

Eine besondere Art der Nebenweg-Übertragung ist die Schall-Längsleitung über angrenzende "flankierende" Bauteile (Abb. GS. 28). Die flankierenden Bauteile werden "angeregt", die Schallwellen werden in den Nachbarraum übertragen und von den flankierenden Bauteilen als Luftschall wieder abgestrahlt.

Abb. GS. 28: Schallübertragungswege, Direktschall- und Flankenschallübertragung

Trennendes Bauteil (Direktschallübertragung)

Flankierendes Bauteil (Flankenschallübertragung)

▶ Gut zu wissen

Die Schalldämmung von Raum zu Raum ist nur so gut wie ihr "schwächstes Kettenglied"! Das heißt:

Sollte z. B. ein Bauteil von den üblichen 5 Bauteilen (trennendes Bauteil + 4 Flankenbauteile) nur 35 dB haben, ist die Schalldämmung von Raum zu Raum i. d. R. ≤ 35 dB auch wenn z. B. eine "Hochleistungstrennwand" mit 60 dB eingesetzt wurde!

Deshalb muss neben der Schallübertragung über das trennende Bauteil auch die Schallübertragung über flankierende Bauteile berücksichtigt wer-

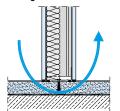
Die Flankenschallübertragung hängt von der Art des Bauteils und dessen Anbindung an das trennende Bauteile ab.

Bei leichten Trennwänden in Trockenbauweise ist die Schall-Längsübertragung über massive flankierende Wände abhängig von der flächenbezogenen Masse dieser Wände.

Sind Trennwände und flankierende Bauteile in Trockenbauweise ausgeführt, ist die Flankenschallübertragung vor allem abhängig von der Anschlussausbildung des Trennbauteils an die flankierenden Bauteile.

Grundsätzlich existieren bei leichten flankierenden Bauteilen zwei Wege, auf denen Schall übertragen wird, unabhängig davon, ob es sich um Decken, Böden oder Wände handelt:

- Übertragung über die Beplankung (z. B. Decklage, Wandschale)
- Übertragung über den Hohlraum

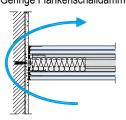

Die Maßnahmen zur Verringerung der Schall-Längsleitung greifen an diesen beiden Übertragungswegen an.

- Um eine Übertragung von Schallwellen im Hohlraum zu minimieren, wird dieser mit Faserdämmstoff bedämpft oder zumindest im Anschlussbereich des trennenden Bauteils abgeschottet (Absorberschott).
- Eine höhere Masse der Beplankung wirkt sich positiv aus, so ist z. B. die Flankenschallübertragung über eine doppelte Beplankung geringer als über eine einfache Beplankung.
- Am wirkungsvollsten ist die Trennung der flankierenden Schale im Anschlussbereich an das trennende Bauteil, d. h. es existiert keine durchgehende Beplankung zwischen zwei Nachbarräumen. Im Idealfall wird das trennende Bauteil in das flankierende Bauteil "eingeschoben" und trennt dieses vollständig. Bei derartigen Konstruktionen sind die Schall-Längsdämmwerte so hoch, dass eine Schall-Längsleitung über das flankierende Bauteil praktisch kaum mehr stattfindet (Abb. GS. 29).

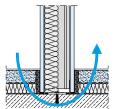
Abb. GS. 29: Maßnahmen zur Verringerung der Schall-Längsleitung bei flankierenden Bauteilen

Fußbodenanschluss

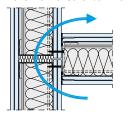
Geringe Flankenschalldämmung

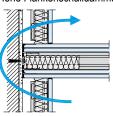

Anschluss an Trockenbauwand

Geringe Flankenschalldämmung



Anschluss an Massivwand


Geringe Flankenschalldämmung


Hohe Flankenschalldämmung

Hohe Flankenschalldämmung

Hohe Flankenschalldämmung

Schallübertragungswege

Rechnerische Größen für Norm-Flankenpegeldifferenzen sind in den nachfolgenden Ausführungen und Kapitel für unterschiedliche Flanken zusammengefasst

Zur Einschätzung der akustischen Qualität des Bauteils und der möglichen Sanierung muss der Planer neben den trennenden und flankierenden Bauteilen auch mögliche andere Schallübertragungswege prüfen. Tab. GS. 5 kann dabei als Checkliste für die schalltechnische Planung dienen; es sind die häufigsten Wege der Schallübertragung aufgelistet.

Tab. GS. 5: Schallübertragungswege

Schallübertragungswege	Grundprinzip Beispiele für Maßnahmen	Zeile
Übertragung durch die Trennwand	 Durch freie Öffnungen oder Undichtheiten in der Fläche (z. B. Mauerwerksfugen, Fugen zwischen Fachwerk und Gefach, undichte Bekleidungen) Durch Schwächungen im Wandaufbau (z. B. Einbaukästen/Nischen, Steckdosen, Sanitärinstallation, Schächte/Kamine, Schattenfugen, verdeckte Fußleisten, Wandverjüngungen o. Ä.) 	1
Übertragung im Boden- und Deckenbereich	 ■ Über durchlaufende Deckenbalken und Sparren ■ Über "leichte" Decken, z. B. Hohlkörperdecken ■ Über eine durchlaufende Deckenbekleidung oder Unterdecke ■ Über einen durchlaufenden Dielenboden oder Estrich ■ Über eine durchlaufende Unterkonstruktion, Lattung ■ Durch den Decken-/Dachhohlraum (zwischen den Balken/Sparren) 	2
Übertragung entlang einer flankierenden Wand (Flurwand/Außenwand)	 Über die Wand bzw. die Beplankung der Wand oder Wandhohlräume Durch die Anschlussfuge Über eine durchlaufende Wärmedämmschicht oder Fassade Durch die Tür und dann über den Flur 	3
Übertragung entlang durchlaufender Bauteile	 Stützen, Unterzüge, Pfetten Sanitärinstallation, Heizungsrohre Kabelkanäle 	4

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 lphofen **Knauf AMF**Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte

Profi-Lösungen für Zuhause

Knauf Design

Oberflächenkompetenz

Knauf Gips

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke

Knauf PFT

Maschinentechnik und Anlagenbau

Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme

Trockenmörtel für Neubau und Sanierung

Schallschutz mit Knauf Anforderungen an die Bauteile

Inhalt

Nutzungshinweise	
Hinweise	3
Hinweise zum Dokument	
Einleitung	
Anforderungen an Gebäude	5
Schallschutzanforderungen für Gebäude	5
Muster-Verwaltungsvorschrift Technische Baubestimmung, (MVV TB)	5
Anforderungen an die Innenbauteile	
DIN 4109	7
VDI 4100	15
DEGA-Empfehlung 103	17
Vergleich der Anforderungen an die Innenbauteile	
Anforderungen an das Bau-Schalldämm-Maß	20
Luftschall	21
Anforderungen an den Norm-Trittschallpegel	22
Trittschall	23
Anforderungen an die Luftschalldämmung von Außenbauteilen	
Ermittlung der Anforderungen an Außenbauteile	25
Ermittlung der Anforderungen an Außenbauteile	25
Gem. DIN 18005-1:2002-07 Anhang A.2	26
Berechnung der Luftschalldämmung von Außenbauteilen	
Gem. BlmSchV – Anlage 1	
16. BlmSchV – Anlage 1: Berechnung des Beurteilungspegels für Straßen	
Gem. DIN 18005-1:2002-07 Anhang A.2	
DIN 18005-1:2002-07 Anhang A.2 Straßenverkehr	30

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Weitere Broschüren des Knauf Schallschutzordners:

Bauakustik

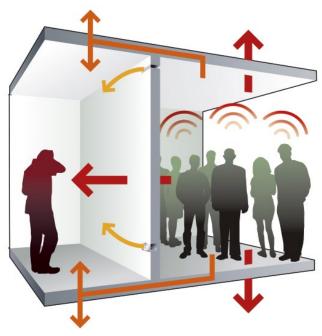
- Grundlagen SS01.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Innenwände SS04.de
- Decken SS05.de
- Außenbauteile SS06.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Angewendete Normen und Richtlinien:

- DIN 4109-1:2018-01
- Beiblatt 2 zur DIN 4109:1989
- DIN 18005-1:2002-07 Anhang A.2
- VDI 4100:2012-10
- DEGA-Empfehlung 103 (2018)
- Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV) vom 12.06.1990, geändert am 18.12.2004 – Anlage 1



Einleitung

Die Schallschutzanforderungen für Gebäude, insbesondere von Wohngebäuden oder Gebäuden mit wohnungsähnlichen Räumen, werden in Deutschland im Wesentlichen durch folgende Normen und Richtlinien umrissen:

- DIN 4109-1:2018-01
- VDI 4100:2012-10
- DEGA-Empfehlung 103:2018-01

Diese Regelwerke beziehen sich auf den Schallschutz zwischen Räumen unter Einbeziehung aller an der Schallübertragung beteiligten Bauteile und Nebenwege und nicht auf die Schalldämmung der trennenden Bauteile allein. Die alleinige Berücksichtigung der trennenden Bauteile zur Sicherstellung des geforderten Schallschutzes reicht deshalb nicht aus. Alle an der Schallübertragung beteiligten Wege, insbesondere die Übertragung über flankierende Bauteile, müssen mitbetrachtet werden. Dies ist bei der Planung und Ausführung zu berücksichtigen.

- ► Gut zu wissen
- DIN:

Deutsches Institut für Normung

- VDI:
 - Verein Deutscher Ingenieure
- DEGA:

Deutsche Gesellschaft für Akustik e.V.

Muster-Verwaltungsvorschrift Technische Baubestimmung, (MVV TB)

Die derzeit gültige MVV TB wurde am 31.08.2017 vom Deutschen Institut für Bautechnik (DIBt) veröffentlicht. Hintergrund der Überarbeitung und Fassung der MVV TB ist das EuGH-Urteil vom 16.10.2014 aufgrund des Verstoßes der Bundesrepublik Deutschland gegen europäische Bauproduktenverordnung. Mit dem Stand vom November 2018 wurde die MVV TB in den folgenden Bundesländern bereits umgesetzt und somit in die Landesbauordnung überführt (Quelle DIBt):

- Bayern
- Baden Württemberg
- Brandenburg
- Bremen
- Berlin
- Hamburg
- Hessen
- Sachsen
- Sachsen-Anhalt
- Thüringen

Es ist zu erwarten, dass die restlichen Bundesländer in der nächsten Zeit folgen. Für diese Bundesländer gilt bis zur Übernahme der MVV TB in die jeweilige Landesbauordnung die DIN 4109:1989.

Unter Teil A5 Schallschutz verweist die MVV TB betreffend der Anforderungen auf die DIN 4109-1:2016-07 sowie auf das Änderungsblatt E DIN 4109-1/A1:2017-01. Die aktuellen DIN-Teile 4109-1 und DIN 4109-2 tragen jedoch das Ausgabedatum 2018. Hintergrund dieser Diskrepanz ist, dass die DIN-Geschäftsstelle einen Antrag auf Veröffentlichung von Änderungsblättern mit der Begründung der Anwenderfreundlichkeit abgelehnt hat. Stattdessen soll eine konsolidierte Norm unter Einarbeitung der Änderungen vorgenommen werden. Dies wurde für die Teile 1 und 2 im Januar 2018 umgesetzt.

Anforderungen an die Innenbauteile

DIN 4109-1:2018-01

Die Anforderungen der DIN 4109-1:2018-01 an die Schalldämmung im eingebauten Zustand sollten so definiert sein, dass diese mit allen gängigen Bauarten und Abmessungen eingehalten werden können. Dabei handelt es sich um Mindestanforderungen, die nicht unterschritten werden dürfen.

Darüber hinaus wurden die Anforderungen mit dem Ziel definiert, dem Anhang I "Grundanforderungen an Bauwerke" der Verordnung (EU) Nr. 305/2011 des europäischen Parlaments und des Rates vom 09. März 2011 zur Festlegung harmonisierter Bedingungen für die Vermarktung von Bauprodukten und zur Aufhebung der Richtlinie 89/106/EWG des Rates Rechnung zu tragen. Dort heißt es im Anhang I unter Punkt 5. Schallschutz

"Das Bauwerk muss derart entworfen und ausgeführt sein, dass der von dem Bewohner oder von in der Nähe befindlichen Personen wahrgenommene Schall auf einem Pegel gehalten wird, der nicht gesundheitsgefährdend ist und bei dem zufrieden stellende Nachtruhe-, Freizeit- und Arbeitsbedingungen sichergestellt sind."

Bei Erfüllung der Mindestanforderungen der DIN 4109 kann jedoch nicht davon ausgegangen werden, dass Geräusche von außen oder aus benachbarten Räumen nicht wahrgenommen oder als nicht belästigend empfunden werden.

Vielmehr können unter Einhaltung der Anforderungen folgende Schutzziele erreicht werden.

- Gesundheitsschutz
- Vertraulichkeit bei normaler Sprachweise
- Schutz vor unzumutbaren Belästigungen

Diesen Schutzzeilen liegt ein Grundgeräuschpegel von $L_{\rm AF,eq}$ = 25 dB zu Grunde.

Die gestellten Anforderungen gelten für schutzbedürftige Räume in Wohnund Nichtwohngebäuden zum Schutz gegen:

- Geräusche aus fremden Wohnungen in vertikaler und horizontaler Richtung
- Geräusche aus haustechnischen Anlagen und Installationen
- Lärm von außen

In dieser Norm nicht geregelt ist der Schutz vor:

- Fluglärm
- Tieffrequenten Schall
- Geräuschen im eigenen Wohnbereich
- Geräusche in Räumen, die nicht für den permanenten Aufenthalt gedacht sind (Flure, Bäder, Toilettenräume, Nebenräume)

Aufbau der Normenreihe DIN 4109

- Teil 1: Mindestanforderungen
- Teil 2: Rechnerische Nachweise der Erfüllung der Anforderungen
- Teil 31: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) Rahmendokument
- Teil 32: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) Massivbau
- Teil 33: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) – Holz,- Leicht- und Trockenbau
- Teil 34: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) Vorsatzkonstruktionen vor massiven Bauteilen
- Teil 35: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) – Elemente, Fenster, Türen, Vorhangfassaden
- Teil 36: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) Gebäudetechnische Anlagen
- Teil 4: Bauakustische Prüfungen

Bis zum jetzigen Stand (November 2018) werden keine Anforderungen oder Empfehlungen an einen erhöhten Schallschutz definiert. Zur Zeit beschäftigt sich jedoch ein Arbeitskreis aus dem Normengremium mit der Erstellung eines Teil 5: Erhöhte Anforderungen.

Tab. Al. 1: Anforderungen an die Schalldämmung in Mehrfamilienhäusern, Bürogebäuden und in gemischt genutzten Gebäuden gem. DIN 4109-1:2018-01 Tab. 2

Bauteile	Anforderunger R´w dB	L' _{n,w} dB	Bemerkungen	Zeile
Decken				
Decken unter allgemein nutzbaren Dachräumen, z. B. Trockenböden, Abstellräumen und ihren Zugängen	≥ 53	≤ 52	-	1
Wohnungstrenndecken (auch Treppen)	≥ 54	≤ 50 ¹⁾²⁾	Wohnungstrenndecken sind Bauteile, die Wohnungen voneinander oder von fremden Arbeitsräumen trennen.	2
Trenndecken (auch Treppen) zwischen fremden Arbeitsräumen bzw. vergleichbaren Nutzungseinheiten	≥ 54	≤ 53	-	3
Decken über Kellern, Hausfluren, Treppenräumen unter Aufenthaltsräumen	≥ 52	≤ 50	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in fremde Aufenthaltsräume in al-	4
Decken über Durchfahrten, Einfahrten von Sammelgaragen und ähnliches unter Aufenthaltsräumen	≥ 55	≤ 50	le Schallausbreitungsrichtungen.	5
Decken unter/über Spiel- oder ähnlichen Gemeinschaftsräumen	≥ 55	≤46	Wegen der verstärkten Übertragung tiefer Frequenzen können zusätzliche Maßnahmen zur Schalldämmung erforderlich sein.	6
Decken unter Terrassen und Loggien über Aufenthaltsräumen	-	≤ 50	Bezüglich der Luftschalldämmung gegen Außenlärm siehe Kapitel "Ermittlung der Anforderungen an Außenbauteile" Seite 24.	7
Decken unter Laubengängen	-	≤53		8
Balkone	-	≤ 58		8.1
Decken und Treppen innerhalb von Wohnungen, die sich über zwei Geschosse erstrecken	-	≤ 50	Die Anforderung an die Trittschalldämmung gilt für die	9
Decken unter Bad und WC ohne/mit Bodenentwässerung	≥ 54	≤ 53	Trittschallübertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.	10
Decken unter Hausfluren	-	≤ 50		11

¹⁾ Im Falle von baulichen Änderungen von vor 1. Juli 2016 fertiggestellten Gebäuden liegt die Anforderung bei L′_{n,w} ≤ 53 dB.

Beim Neubau von Gebäuden mit Deckenkonstruktionen, die der DIN 4109-33:2016-07, Schallschutz im Hochbau – Teil 33: Daten für die rechnerischen Nachweise des Schallschutzes (Bauteilkatalog) – Holz-, Leicht- und Trockenbau, zuzuordnen sind, liegt die Anforderung bei L´_{n,w} ≤ 53 dB.

Tab. Al. 2: Anforderungen an die Schalldämmung in Mehrfamilienhäusern, Bürogebäuden und in gemischt genutzten Gebäuden gem. DIN 4109-1:2018-01 Tab. 2

Bauteile	Anforderungen R´ _w	l L´ _{n,w}	Bemerkungen	Zeile
	dB	dB		
Treppen				
Treppenläufe und -podeste	-	≤ 53	-	12
Wände				
Wohnungstrennwände und Wände zwischen fremden Arbeitsräumen	≥53	-	Wohnungstrennwände sind Bauteile, die Wohnungen voneinander oder von fremden Arbeitsräumen trennen.	13
Treppenraumwände und Wände neben Hausfluren	≥53	-	Für Wände mit Türen gilt die Anforderung R'_{w} (Wand) = R_{w} (Tür) + 15 dB. Darin bedeutet R_{w} (Tür) die erforderliche Schalldämmung der Tür nach Zeile 18 oder Zeile 19. Wandbreiten \leq 30 cm bleiben dabei unberücksichtigt.	14
Wände neben Durchfahrten, Sammelgaragen, einschließlich Einfahrten	≥ 55	-	-	15
Wände von Spiel- oder ähnlichen Gemeinschaftsräumen	≥ 55	-	-	16
Schachtwände von Aufzugsanlagen an Aufenthaltsräumen	≥57	_	-	17
Türen				
Türen, die von Hausfluren oder Treppenräumen in ge- schlossene Flure und Dielen von Wohnungen und Wohnheimen oder von Arbeitsräumen führen	≥27	-	Die berücksichtigte Schallübertragung erfolgt dabei nur über die Tür. Es muss ein Sicherheitsbeiwert von 5 dB berücksich-	18
Türen, die von Hausfluren oder Treppenräumen unmit- telbar in Aufenthaltsräume – außer Flure und Dielen – von Wohnungen führen	≥37	-	tigt werden.	

Tab. Al. 3: Anforderungen an die Luft- und Trittschalldämmung zwischen Einfamilien- Reihenhäusern und zwischen Doppelhäusern gem. DIN 4109-1:2018-01 Tab. 3

Bauteile	Anforderungen		Bemerkungen	
	R′ _w dB	L´ _{n,w} dB		
Decken				
Decken	_	≤41	Die Anforderung an die Trittschalldämmung gilt nur für die Trittschallübertragung in fremde Aufenthaltsräume in waagerechter oder schräger Richtung.	
Bodenplatte auf Erdreich bzw. Decke über Kellergeschoss	-	≤46		
Treppen				
Treppenläufe und -podeste	-	≤46	Die Anforderung an die Trittschalldämmung gilt nur für die Trittschallübertragung in fremde Aufenthaltsräume in waagerechter oder schräger Richtung.	3
Wände				
Haustrennwände zu Aufenthaltsräumen, die im untersten Geschoss (erdberührt oder nicht) eines Gebäudes gelegen sind	≥ 59	-	-	4
Haustrennwände zu Aufenthaltsräumen, unter denen mindestens 1 Geschoss (erdberührt oder nicht) des Gebäudes vorhanden ist	≥62	_	-	5

Tab. Al. 4: Anforderungen an die Luft- und Trittschalldämmung in Hotels und Beherbergungsstätten gem. DIN 4109-1:2018-01 Tab. 4

Bauteile Anforderungen Bemerkungen				
Buttene	R' _w dB	L´ _{n,w} dB	Demorkangen	Zeile
Decken				
Decken, einschließlich Decken unter Fluren	≥ 54	≤ 50	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in Aufenthaltsräume in alle Schallausbreitungsrichtungen.	1
Decken unter/über Schwimmbädern, Spiel- oder ähnlichen Gemeinschaftsräumen zum Schutz gegenüber Schlafräumen	≥ 55	≤46	Wegen verstärkten tieffrequenten Schalls können zu- sätzliche Maßnahmen zur Körperschalldämmung erfor- derlich sein.	2
Decken unter Bad und WC ohne/mit Bodenentwässerung	≥ 54	≤ 53	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in Aufenthaltsräume in alle Schallausbreitungsrichtungen.	3
Treppen				
Treppenläufe und -podeste	-	≤ 58	Keine Anforderungen an Treppenläufe und Zwischenpodeste in Gebäuden mit Aufzug.	4
Wände				
Wände zwischen Übernachtungsräumen sowie Fluren und Übernachtungsräumen	≥47	-	Gilt auch für Trennwände mit Türen zwischen fremden Übernachtungsräumen ($R'_{w,res}$).	5
Türen				
Türen zwischen Fluren und Übernachtungsräumen	≥32	-	Die berücksichtigte Schallübertragung erfolgt dabei nur über die Tür. Es muss ein Sicherheitsbeiwert von 5 dB berücksichtigt werden.	6

Tab. Al. 5: Anforderungen an die Luft- und Trittschalldämmung zwischen Räumen in Krankenhäusern und Sanatorien gem. DIN 4109-1:2018-01 Tab. 5

Bauteile	Anforderungen		Bemerkungen	Zeile
	R′ _w dB	L´ _{n,w} dB		
Decken	QD.	ub		
Decken, einschließlich Decken unter Fluren	≥54	≤53	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.	1
Decken unter/über Schwimmbädern, Spiel- oder ähnli- chen Gemeinschaftsräumen	≥ 55	≤46	Wegen verstärkten Entstehens tieffrequenten Schalls können zusätzliche Maßnahmen zur Körperschalldämmung erforderlich sein.	2
Decken unter Bädern und WCs ohne/mit Bodenent- wässerung	≥54	≤53	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in fremde Aufenthaltsräume in alle Schallausbreitungsrichtungen.	3
Treppen				
Treppenläufe und -podeste	-	≤58	Keine Anforderungen an Treppenläufe und Zwischen- podeste in Gebäuden mit Aufzug.	4
Wände				
Wände zwischen ■ Krankenräumen ■ Fluren und Krankenräumen ■ Untersuchungs- bzw. Sprechzimmern ■ Fluren und Untersuchungs- bzw. Sprechzimmern ■ Krankenräumen und Arbeits- und Pflegeräumen	≥47	-	-	5
Wände zwischen Räumen mit Anforderungen an er- höhtes Ruhebedürfnis und besondere Vertraulichkeit (Diskretion)	≥52	-	-	6
Wände zwischen ■ Operations- bzw. Behandlungsräumen ■ Fluren und Operations- bzw. Behandlungsräumen	≥42	-	-	7
Wände zwischen ■ Räumen der Intensivpflege ■ Fluren und Räumen der Intensivpflege	≥37	-	-	8
Türen				
Türen zwischen ■ Untersuchungs- bzw. Sprechzimmern ■ Fluren und Untersuchungs- bzw. Sprechzimmern	≥37	-	Die berücksichtigte Schallübertragung erfolgt dabei nur über die Tür. Es muss ein Sicherheitsbeiwert von 5 dB berücksichtigt werden.	
Türen zwischen Räumen mit Anforderungen an erhöhtes Ruhebedürfnis und besondere Vertraulichkeit (Diskretion)	≥37	-		
Türen zwischen ■ Fluren und Krankenräumen ■ Operations- bzw. Behandlungsräumen ■ Fluren und Operations- bzw. Behandlungsräumen	≥32	-		11

DIN 4109

Tab. Al. 6: Anforderung an die Luft- und Trittschalldämmung, Schalldämmung in Schulen und vergleichbaren Einrichtungen gem. DIN 4109-1:2018-01 Tab. 6

Bauteile	Anforderunger R' _w dB	L´ _{n,w}	Bemerkungen	Zeile
Decken				
Decken zwischen Unterrichtsräumen oder ähnlichen Räumen/Decken unter Fluren	≥ 55	≤ 53	Die Anforderung an die Trittschalldämmung gilt für die Trittschallübertragung in Aufenthaltsräumen in alle Schallausbreitungsrichtungen. Zu ähnlichen Räumen gehören auch solche Räume mit erhöhtem Ruhebedürfnis, z. B. Schlafräume.	1
Decken zwischen Unterrichtsräumen oder ähnlichen Räumen und "lauten" Räumen (z. B. Speiseräume, Ca- feterien, Musikräume, Spielräume, Technikzentralen)	≥ 55	≤46	Wegen der verstärkten Übertragung tiefer Frequenzen können zusätzlich Maßnahmen zur Körperschalldämmung erforderlich sein.	2
Decken zwischen Unterrichtsräumen oder ähnlichen Räumen und z. B. Sporthallen, Werkräumen	≥60	≤46	-	3
Wände				
Wände zwischen Unterrichtsräumen oder ähnlichen Räumen untereinander und zu Fluren	≥ 47	-	Zu ähnlichen Räumen gehören auch solche Räume mit erhöhtem Ruhebedürfnis, z. B. Schlafräume.	
Wände zwischen Unterrichtsräumen oder ähnlichen Räumen und Treppenhäusern	≥52	-		
Wände zwischen Unterrichtsräumen oder ähnlichen Räumen und "lauten" Räumen (z. B. Speiseräume, Ca- feterien, Musikräume, Spielräume, Technikzentralen)	≥ 55	-	-	6
Wände zwischen Unterrichtsräumen oder ähnlichen Räumen und z. B. Sporthallen, Werkräumen	≥60	_	-	7
Türen				
Türen zwischen Unterrichtsräumen oder ähnlichen Räumen und Fluren	≥32	-	Die berücksichtigte Schallübertragung erfolgt dabei nur über die Tür. Es muss ein Sicherheitsbeiwert von 5 dB berücksichtigt werden.	
Türen zwischen Unterrichtsräumen oder ähnlichen Räumen untereinander	≥37	-		9

DIN 4109

- Tab. Al. 7: Anforderungen an die Luft- und Trittschalldämmung von Bauteilen zwischen "besonders lauten" und schutzbedürftigen Räumen gem. DIN 4109-1:2018-01 Tab. 8
- Als besonders laut gelten Räumen, in denen der maximale Schalldruckpegel des Luftschalls häufig über 75 dB beträgt.
- Sowie Räume, in denen im Vergleich zu Wohnungen häufiger mit starker Körperschallanregung zu rechnen ist. Beispielhafte Räume sind:
 - Handwerks- und Gewerbebetriebe, Gaststätten, Sport- und Freizeitanlagen, Schwimmbäder, Theater und Musikräume

Art der Räume	Bauteile	Bewertetes Sch Maß R' _w in dB Schalldruckpege 75 – 80 dB		Bewerteter Norm-Trittschall- pegel L´ _{n,w} ¹⁾²⁾ in dB	Zeile
Räume mit "besonders lauten" gebäudetechnischen	Decken, Wände	≥57	≥62	-	1.1
Anlagen oder Anlageteilen	Fußböden	-	-	≤ 43 ³⁾	1.2
Betriebsräume von Handwerks- und Gewerbebetrie-	Decken, Wände	≥57	≥62	-	2.1
ben, Verkaufsstätten	Fußböden	_	-	≤43	2.2
Küchenräume der Küchenanlagen von Beherbergungs-	Decken, Wände	≥ 55	≥ 55	-	3.1
stätten, Krankenhäusern, Sanatorien, Gaststätten, Imbissstuben und dergleichen (bis 22:00 Uhr in Betrieb)	Fußböden	-	-	≤43	3.2
Küchenräume wie Zeile 3.1/3.2, jedoch auch nach	Decken, Wände	≥ 57 ⁴⁾	≥ 57 ⁴⁾	-	3.3
22:00 Uhr in Betrieb	Fußböden	_	-	≤33	3.4
Gasträume (bis 22:00 Uhr in Betrieb)	Decken, Wände	≥ 55	≥ 57	-	4.1
	Fußböden	_	_	≤43	4.2
Gasträume L _{AF,max} ≤ 85 dB	Decken, Wände	≥62	≥62	-	5.1
(auch nach 22:00 Uhr in Betrieb)	Fußböden	_	_	≤33	5.2
Räume von Kegelbahnen	Decken, Wände	≥67	≥67	-	6.1
	Fußböden ■ Keglerstube ■ Bahn	-		≤33 ≤13	6.2
Gasträume 85 dB ≤ L _{AF,max} ≤ 95 dB	Decken, Wände	≥72	≥72	-	7.1
z. B. mit elektroakustischen Anlagen	Fußböden	-	_	≤28	7.2

¹⁾ Jeweils in Richtung der Schallausbreitung.

²⁾ Die für Maschinen erforderliche K\u00f6rperschalld\u00e4mmung ist mit diesem Wert nicht erfasst; hierf\u00fcr sind gegebenenfalls weitere Ma\u00ddnahmen erforderlich. Ebenso kann je nach Art des Betriebes ein niedrigeres L'_{n,w} notwendig sein; dies ist im Einzelfall zu \u00fcberpr\u00fcren. Wegen der verst\u00e4rkten \u00dcbertragung tiefer Frequenzen k\u00f6nnen zus\u00e4tzliche Ma\u00ddnahmen zur Schalld\u00e4mmung erforderlich sein.

³⁾ Nicht erforderlich, wenn geräuscherzeugende Anlagen ausreichend körperschallgedämmt aufgestellt werden; eventuelle Anforderungen nach DIN 4109-1:2018-01 Tabellen 2 bis 6 bleiben hiervon unberührt.

⁴⁾ Handelt es sich um Großküchenanlagen und darüber liegende Wohnungen als schutzbedürftige Räume gilt R´_w≥ 62 dB.

Tab. Al. 8: Maximal zulässige A-bewertete Schalldruckpegel in fremden schutzbedürftigen Räumen, erzeugt von gebäudetechnischen Anlagen und baulich mit dem Gebäude verbundenen Betrieben gem. DIN 4109-1:2018-01 Tab. 9

Geräuschquellen		Maximal zulässige A-bewertet Wohn- und Schlafräume	e Schalldruckpegel in dB Unterrichts- und Arbeitsräume	Zeile
Sanitärtechnik/Wasserinstallationen (Wasserversorg gen gemeinsam)	jungs- und Abwasseranla-	$L_{AF,max,n} \le 30^{-1/2/3}$	$L_{AF, max, n} \le 35^{(1)(2)(3)}$	1
Sonstige hausinterne, fest installierte technische Schallquellen der technischen Ausrüstung, Ver- und Entsorgung sowie Garagenanlagen		$L_{AF,max,n} \le 30^{-3}$	$L_{AF,max,n} \le 35^{3}$	2
Gaststätten einschließlich Küchen, Verkaufsstätten, Betriebe u. Ä.	■ Tags 6 Uhr bis 22 Uhr	$L_{r} \le 35$ $L_{AF,max} \le 45$	$L_{r} \le 35$ $L_{AF,max} \le 45$	3
	■ Nachts nach TALärm	$L_{r} \le 25$ $L_{AF,max} \le 35$	$L_{r} \le 35$ $L_{AF,max} \le 45$	4

- 1) Einzelne kurzzeitige Geräuschspitzen, die beim Betätigen der Armaturen und Geräte nach DIN 4109-1:2018-01 Tabelle 11 (Öffnen, Schließen, Umstellen, Unterbrechen) entstehen, sind derzeit nicht zu berücksichtigen.
- 2) Voraussetzungen zur Erfüllung des zulässigen Schalldruckpegels:
 - Die Ausführungsunterlagen müssen die Anforderungen des Schallschutzes berücksichtigen, d. h. zu den Bauteilen müssen die erforderlichen Schallschutznachweise vorliegen;
 - Außerdem muss die verantwortliche Bauleitung benannt und zu einer Teilabnahme vor Verschließen bzw. Bekleiden der Installation hinzugezogen werden.
- 3) Abweichend von DIN EN ISO 10052:2010-10, 6.3.3, wird auf Messung in der lautesten Raumecke verzichtet (siehe auch DIN 4109-4).

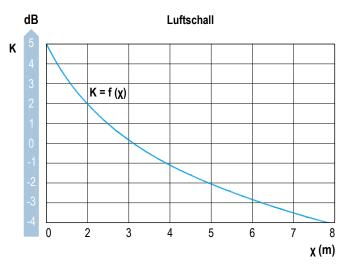
Tab. Al. 9: Anforderungen an maximal zulässige A-bewertete Schalldruckpegel in schutzbedürftigen Räumen in der eigenen Wohnung, erzeugt von raumlufttechnischen Anlagen im eigenen Wohnbereich die nicht vom Bewohner selbst betätigt bzw. in Betrieb gesetzt werden gem. DIN 4109-1:2018-01 Tab 10

Geräuschquellen	Maximal zulässige A-bewertete Schalldruckpegel in dB		Zeile
	Wohn- und Schlafräume	Küchen	
Fest installierte technische Schallquellen der Raumlufttechnik im eigenen Wohn- und Arbeitsbereich	$L_{AF,max,n} \le 30^{-1)(2)(3)(4)}$	$L_{AF,max,n} \le 33^{(1)(2)(3)(4)}$	1

- 1) Einzelne, kurzzeitige Geräuschspitzen, die beim Ein- und Ausschalten der Anlagen auftreten, dürfen maximal 5 dB überschreiten.
- 2) Voraussetzungen zur Erfüllung des zulässigen Schalldruckpegels:
 - Die Ausführungsunterlagen müssen die Anforderungen an den Schallschutz berücksichtigen, d. h. zu den Bauteilen müssen die erforderlichen Schallschutznachweise vorliegen
 - Außerdem muss die verantwortliche Bauleitung benannt und zu einer Teilabnahme vor Verschließen bzw. Bekleiden der Installation hinzugezogen werden
- 3) Abweichend von DIN EN ISO 10052:2010-10, 6.3.3, wird auf Messung in der lautesten Raumecke verzichtet (siehe auch DIN 4109-4).
- 4) Es sind um 5 dB höhere Werte zulässig, sofern es sich um Dauergeräusche ohne auffällige Einzeltöne handelt.

VDI 4100:2012-10

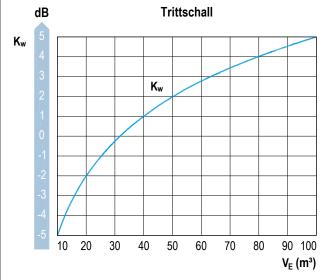
Die VDI 4100 enthält Empfehlungen für einen erhöhten Schallschutz in Wohnungen oder wohnähnlichen Räumen im Sinne der Vertraulichkeit und eines höheren Komforts.


Die Empfehlungen in der VDI sind dabei folgendermaßen zu interpretieren:

- Sie stellen zusätzliche Schallschutzstufen (SSt) für die Planung in Ergänzung der Mindestwerte der DIN 4109 in einem Dreistufensystem dar.
- Durch Anwendung dieser Gütestufen kann der gewünschte Schallschutz im Planungsstadium mit dem Bauherren privatrechtlich vereinbart werden.
- Die VDI 4100 ist baurechtlich nicht eingeführt, wird aber oftmals in deutschen Gerichten in Streitfällen zur Definition des geschuldeten Schallschutzes nach dem Stand der Technik herangezogen.

Die kennzeichnenden Größen für die Anforderungen an die Luft- und Trittschalldämmung von Bauteilen sind in der VDI 4100:2012-10 die nachhallbezogenen Kennwerte bewertete Standard-Schallpegeldifferenz $D_{nT,w}$ und der bewertete Standard-Trittschallpegel $L^{'}_{nT,w}$ in dB analog der Festlegungen in der DIN EN 12354-1 bis -3. Mit diesen Kennwerten wird gegenüber den bisher benutzten bauteilbezogenen Werten $R^{'}_{w}$ und $L^{'}_{n,w}$ auch berücksichtigt, dass das Schallschutzniveau für den zu schützenden Raum neben den akustischen Eigenschaften des Trennbauteiles und der flankierenden Bauteile auch von der Raumgeometrie (Größe des Raumes) beeinflusst wird.

Aus Abb. Al. 1 wird deutlich, dass bei einer Raumtiefe von 3,10 m und gleichgroßer Trennwandfläche die R $^{'}_{\rm w}$ und D $_{\rm nT,w}$ - Werte gleich sind. Ist die Raumtiefe größer als 3,10 m, werden die Werte der Schallpegeldifferenz, also der Schallschutz im Empfangsraum größer als das resultierende Schalldämm-Maß aussagt. Bei kleineren Raumtiefen vermindert sich der Schallschutz bei gleichem resultierendem Schalldämm-Maß dagegen.


Abb. Al. 1: Ermittlung der Differenz K zwischen bewertetem Schalldämm-Maß R´, und bewerteter Standard-Schallpegeldifferenz D_{nT,w} als Funktion der Raumtiefe bzw. Raumhöhe gem. VDI 4100:2012-10

- X: Raumtiefe t oder Raumhöhe h des Empfangsraumes senkrecht zur Trennwand bzw. -decke in m
- ${\it K}$: Differenz aus dem bewerteten Schalldämm-Maß ${\it R'}_{\it w}$ und der bewerteten Standard-Schallpegeldifferenz ${\it D_{nTw}}$

Ähnlich verhalten sich die Beziehungen bei den Kennwerten im Trittschallschutz (Abb. Al. 2). Bei einem Volumen von 32 m³ des Empfangsraumes sind $L^{'}_{n,w}$ und $L^{'}_{n,m}$ gleich. Bei größer werdenden Empfangsräumen reduziert sich der bewertete Standard-Trittschallpegel $L^{'}_{n,m}$ (Trittschallschutz erhöht sich), entsprechend erhöht sich der bewertete Standard-Trittschallpegel (Trittschallschutz reduziert sich) bei kleiner werdenden Raumvolumen.

Abb. Al. 2: Ermittlung der Differenz K_w zwischen dem bewerteten Norm-Trittschallpegel L'_{n,w} und dem bewerteten Standard-Trittschallpegel L'_{n,T,w} als Funktion vom Volumen des Empfangsraumes gem. VDI 4100:2012-10

V_F: Volumen des Empfangsraumes in m³

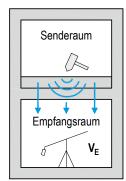

 $\mathbf{K_w}$: Differenz aus dem bewerteten Norm-Trittschallpegel L $_{n,\mathbf{w}}'$ und dem bewerteten Standard-Trittschallpegel L $_{nT,\mathbf{w}}'$

Abb. Al. 3: Prüfaufbauten Sende- und Empfangsraum Luft- und Trittschall

Luftschall

Senderaum Empfangs-raum Mic

Trittschall

Im Gegensatz zur DIN 4109:2018-01 werden in der VDI 4100:2012-10 auch Empfehlungen für einen erhöhten Schallschutz im eigenen Wohnbereich aufgeführt.

Gut zu wissen

Der Zusammenhang zwischen den bauteilbezogenen Kenngrößen R $^{\prime}_{w}$ und L $^{\prime}_{n,w}$ und den raumbezogenen Kenngrößen D $_{nT,w}$ und L $^{\prime}_{nT,w}$ ergibt sich aus der Geometrie des Empfangsraumes nach VDI 4100:2012-10 für quaderförmige Räume zu:

$$D_{nTw} = R'_w - K \rightarrow R'_w = D_{nTw} + K'$$

Der Korrekturwert K kann aus der Abb. Al. 1 bestimmt werden.

$$L'_{nT,w} = L'_{n,w} - K_w \longrightarrow L'_{n,w} = L'_{nT,w} + K_w$$

Der Korrekturwert K_w kann aus der Abb. Al. 2 bestimmt werden.

Anforderungen an die Innenbauteile

Empfohlene Schallschutzwerte gem. VDI 4100:2012-10

Tab. Al. 10: Empfohlene Schallschutzwerte der Schallschutzstufen (SSt) innerhalb der eigenen Wohnung in Mehrfamilienhäusern bzw. Einfamilien-Doppelund Einfamilien-Reihenhäusern gem. VDI 4100:2012-10 Tab. 2 und Tab. 3

Schallschutzkriterium		Akustische Größe in dB	SSt I	SSt II	SSt III	Zeile
Empfohlene Schallschutzwerte der Schallschutzstufen	(SSt) in Mehrfamilienhäusern					
Luftschallschutz		$D_{nT,w}$	≥56	≥59	≥ 64	1a
Luftschallschutz	Treppenraumwand mit Tür	D _{nT,w} 1)	≥45	≥50	≥ 55	1b
Trittschallschutz	Vertikal, horizontal oder diagonal	L′ _{nT,w} ²⁾	≤51	≤44	≤ 37	2
Gebäudetechnische Anlagen (einschließlich Wasserversorgungs- und Abwasseranlagen gemeinsam)		$\overline{L_{AFmax,nT}}$ 3)	≤30	≤27	≤ 24	3
Luftschallschutz gegen Außenlärm in schutzbedürftigen Räumen		res.R $_{\rm w}^{\prime}$ $_{\rm b}^{6)}$ (res.D $_{\rm nT,w}$) 5)	4)	4)	⁴⁾ + 5 dB	4
Empfohlene Schallschutzwerte der Schallschutzstufen	(SSt) in Einfamilien-Doppel- und I	Einfamilien-Reihenh	äusern			
Luftschallschutz		$D_{nT,w}$	≥65	≥69	≥73	5
Trittschallschutz	Horizontal oder diagonal	L′ _{nT,w} ²⁾	≥46	≥39	≥32	6
Gebäudetechnische Anlagen (einschließlich Wasserversorgungs- und Abwasser- anlagen gemeinsam)		$\overline{L_{\text{AFmax,nT}}}$ 3)	≤30	≤25	≤22	7
Luftschallschutz gegen Außenlärm in schutzbedürftigen Räumen		res.R $_{\rm w}^{\prime}$ $_{\rm 0}^{6)}$ (res.D $_{\rm nT,w}$) $_{\rm 5}^{5)}$	4)	4)	⁴⁾ + 5 dB	8

- 1) Die Empfehlungen beziehen sich auf den Schallschutz vom Treppenraum zum nächsten Aufenthaltsraum; wohnungsinterne Türen dürfen im Falle eines dazwischen liegenden Raums mit einem pauschalen Normschallpegeldifferenz-Abschlag von 10 dB berücksichtigt werden.
- 2) Gilt auch für die Trittschallübertragung von Balkonen, Loggien, Laubengängen und Terrassen in fremde schutzbedürftige Räume.
- 3) Einzelne kurzzeitige Geräuschspitzen, die beim Betätigen (Öffnen; Schließen, Umstellen, Unterbrechen u. Ä.) der Armaturen und Geräte der Wasserinstallation entstehen, sollen die Kennwerte der SSt II und SSt III um nicht mehr als 10 dB übersteigen. Dabei wird eine bestimmungsgemäße Benutzung vorausgesetzt.
- 4) Siehe Regelungen in DIN 4109:1989-11, Abschnitt 5.
- 5) Ohne Korrektur nach DIN 4109:1989-11, Abschnitt 5.2, Tabelle 9.
- 6) Mit Bezug auf Außenbauteile, die aus mehreren Teilflächen unterschiedlicher Schalldämmung bestehen.

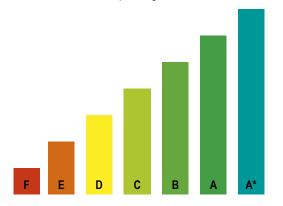
Tab. Al. 11: Empfohlene Schallschutzwerte für höheren Schallschutz innerhalb von Wohnungen und Einfamilienhäusern gem. VDI 4100:2012-10 Tab. 4

Schallschutzkriterium		Akustische Größe in dB	SSt I EB I	SSt II EB II	Zeile
Empfohlene Schallschutzwerte für höheren Schal	lschutz innerhalb von Wohnungen und Einfamilien	häusern			
Luftschallschutz	Horizontal (Wände ohne Türen) und vertikal	$D_{nT,w}$	48	52	1
Luftschallschutz	Bei offenen Grundrissen Wand mit Tür zum getrennten Raum	$D_{nT,w}$	26	31	2
Trittschallschutz	Decken, Treppen im abgetrennten Treppenraum 8)	L′ _{nT,w}	53	46	3
Gebäudetechnische Anlagen einschließlich Wasserversorgungs- und Abwasseranlagen gemeinsam für die Ver- und Entsorgung des eigenen Bereichs		L _{AFmax,nT} 7) 9)	35	30	4

- 7) Dies gilt nicht für Geräusche von im eigenen Bereich fest installierten technischen Schallquellen (Heizungs-, Lüftungs- und Klimaanlagen), die im üblichen Betrieb vom Bewohner beeinflusst, das heißt. selbst betätigt bzw. in Betrieb gesetzt werden. Bei offenen Grundrissen kann nicht sichergestellt werden, dass im schutzbedürftigen Raum L_{AFmax,nT} = 35 dB eingehalten werden.
- 8) Oben und unten abgeschlossen.
- 9) Einzelne kurzzeitige Geräuschspitzen, die beim Betätigen (Öffnen; Schließen, Umstellen, Unterbrechen u. Ä.) der Armaturen und Geräte der Wasserinstallation entstehen, sollen die empfohlenen Schallschutzwerte der SSt EB I und SSt EB II um nicht mehr als 10 dB übersteigen. Dabei wird eine bestimmungsgemäße Benutzung vorausgesetzt.
- EB I = gewisser Schallschutz im eigenen Bereich
- EB II = höherer Schallschutz im eigenen Bereich

DEGA-Empfehlung 103

DEGA-Empfehlung 103


Nach der Einführung der DEGA-Empfehlung 103 Schallschutz im Wohnungsbau – Schallschutzausweis im März 2009 erfolgte eine Überarbeitung im Januar 2018. Die wesentlichsten Änderungen waren:

- Anpassungen an die DIN 4109 mit dem Ausgabestand 2016 und 2018
- Empfehlungen an den Schallschutz im eigenen Wohnbereich
- Aufnahme von Empfehlungen betreffend der Raumakustik in Treppenhäuser und Fluren
- Definition von Anforderungen an die Körperschallentkopplungen und Nutzergeräuschen
- Redaktionelle Änderungen

Die DEGA-Empfehlung 103 definiert sieben Schallschutzklassen zur Bewertung von Wohnräumen. Mittels dieser Klassifizierungen können Bestandsgebäude eingeteilt und verglichen werden, sowie in der Planungsphase der gewünschte Schallschutz festgelegt werden. Bei der Planung von Neu- oder Umbauten ist jedoch darauf zu achten, dass die Mindestanforderungen an den Schallschutz gemäß DIN 4109 zwingend einzuhalten sind. Eine Einstufung in einer der DEGA-Klassen ersetzt nicht den geforderten Schallschutznachweis. Über die Mindestanforderungen der DIN 4109 hinausgehende Anforderungen oder Empfehlungen sind privatrechtlich zu vereinbaren.

Bei einer üblichen Wohnungsnutzung werden folgende Charakterisierungen hinsichtlich des baulichen Schallschutzes angegeben:

Abb. Al. 4: DEGA-Empfehlung 103 Schallschutzklassen von F bis A*

Klasse A*:

Wohneinheit mit sehr gutem Schallschutz, die ein ungestörtes Wohnen nahezu ohne Rücksichtnahme gegenüber den Nachbarn ermöglicht.

Hoher Schallschutz in Doppel- und Reihenhäusern.

Klasse A:

Wohneinheit mit sehr gutem Schallschutz, die ein ungestörtes Wohnen ohne große Rücksichtnahme gegenüber den Nachbarn ermöglicht.

Erhöhter Schallschutz in Doppel- und Reihenhäusern.

Klasse B

Wohneinheit mit gutem Schallschutz, die bei gegenseitiger Rücksichtnahme zwischen den Nachbarn ein ruhiges Wohnen bei weitgehendem Schutz der Privatsphäre ermöglicht.

Hoher Schallschutz in Mehrfamilienhäusern.

Normaler Schallschutz in Doppel- und Reihenhäusern.

Klasse C

Wohneinheit mit gutem Schallschutz, in der die Bewohner bei üblichen rücksichtsvollen Wohnverhalten im allgemeinen Ruhe finden und die Vertraulichkeit gewahrt bleibt.

Erhöhter Schallschutz in Mehrfamilienhäuser.

Klasse D:

Wohneinheit mit einem Schallschutz, der die Anforderungen der DIN 4109-1 für Geschosshäuser mit Wohnungen und Arbeitsräumen im Wesentlichen erfüllt und damit die Bewohner in Aufenthaltsräumen im Sinne des Gesundheitsschutzes vor unzumutbaren Belästigungen durch Schallübertragung aus fremden Wohneinheiten und von außen schützt. Ausnahmen sind:

- Nutzergeräusche und kurzzeitige Pegelspitzen, die beim Betätigen von Armaturen der Wasserinstallation auftreten weisen ein hohes Störpotenzial auf. Deshalb werden in der Empfehlung der DEGA-103 sinnwolle und erreichbare Anforderungen angegeben.
- An das Nutzergeräusch Urinieren (Spureinlauf) wird aufgrund des sehr hohen Störpotenzials die gleiche Anforderung gestellt wie an Geräusche aus Wasserinstallationen.
- Für Geräusche aus Betrieben und Gaststätten werden in DIN 4109-1 geringere Anforderungen gestellt.

Es kann nicht erwartet werden, dass Geräusche aus fremden Wohneinheiten oder von außen nicht mehr wahrgenommen werden. Dies erfordert gegenseitige Rücksichtnahme durch Vermeidung unnötigen Lärms. Die Anforderungen setzen voraus, dass in benachbarten Räumen keine ungewöhnlich starken Geräusche verursacht werden.

Normaler Schallschutz in Mehrfamilienhäusern.

Klasse E:

Wohneinheit mit einem Schallschutz, der die Anforderungen der DIN 409-1:2018-01 nicht erfüllt. Belästigungen durch Schallübertragung aus fremden Wohneinheiten und von außen sind möglich, besondere Rücksichtnahme ist unbedingt erforderlich. Die Vertraulichkeit ist nicht mehr gegeben.

Klasse F:

Wohneinheit mit einem schlechten Schallschutz, der deutlich unter den Anforderungen der DIN 4109-1 liegt. Mit Belästigungen durch Schallübertragungen aus fremden Wohneinheiten und von außen muss auch bei bewusster Rücksichtnahme gerechnet werden, Vertraulichkeit kann nicht erwartet werden.

Die Klassen F und E dienen z. B. der Einstufung von unsanierten Altbauten. An Gebäude der Klasse F werden keine Anforderungen gestellt.

Der Schallschutz im eigenen Wohnbereich wir in drei Klassen EW1 bis EW3 eingeteilt.

Klasse EW1:

Schallschutz im eigenen Wohnbereich, bei welchem Vertraulichkeit nicht erwartet werden kann.

Klasse EW2:

Schallschutz im eigenen Wohnbereich, bei welchem ein Mindestmaß an Vertraulichkeit gewährleistet werden kann und erhebliche Störungen vermieden werden.

Klasse EW3:

Schallschutz im eigenen Wohnbereich, bei welchem Vertraulichkeit gewährleistet werden kann und Störungen vermieden werden.

Die folgenden Anforderungen gelten unabhängig von der Übertragungsrichtung (vertikal, diagonal, horizontal) und den betrachteten Bauteilen.

Anforderungen an die Innenbauteile

Schallschutz zwischen fremden Wohneinheiten

Schallschutzklassen	F	E	D	С	В	Α	A *	Zeil
Anforderungen Luftschall								
Wände/Decken (R´ _w) ¹⁾	< 50 dB	≥50 dB	≥ 54 dB ²⁾	\geq 57 dB ²⁾	≥62 dB	≥67 dB	≥72 dB	1
Wohnungseingangstüren in Flure oder Dielen $(R'_w)^{3)}$	< 22 dB	≥ 22 dB	≥27 dB	≥32 dB	≥37 dB	≥ 40) dB	2
Wohnungseingangstüren direkt in Aufenthaltsräume $(R'_w)^{3)}$	< 32 dB	≥ 32 dB	≥37 dB	≥42 dB		Nicht zulässig		3
 Bei Trennflächen von weniger als 10 m² ist der Nachweis Für Wände gilt ein um 1 dB reduzierter Anforderungswer Die Anforderung an die Türen gilt für die Schallübertragu. 	t		eingebaute 1	- ür ohne Neb	enwege.			
Anforderungen Trittschall								
Decken (L´ _{n,w})	$> 60 dB^{4)}$	\leq 60 dB ⁴⁾	≤50 dB	\leq 45 dB ⁴⁾	\leq 40 dB ⁴⁾	≤35 dB	≤30 dB	4
Balkone, Loggien, Terrassen (L´ _{n,w})	$> 63 dB^{4)}$	\leq 63 dB ⁴⁾	\leq 50 dB ⁵⁾	\leq 48 dB ⁴⁾	\leq 43 dB ⁴⁾	≤38 dB	≤33 dB	5
reppen, Podeste, Hausflure, Laubengänge (L´ _{n.w})	> 63 dB ⁴⁾⁾	≤ 63 dB ⁴⁾	≤53 dB ⁶⁾	≤ 48 dB ⁴⁾	\leq 43 dB ⁴⁾	≤38 dB	≤33 dB	6
5) Bei Balkonen Anforderung L´ _{n,w} ≤ 58 dB. 6) Bei Hausfluren Anforderung L´ _{n,w} ≤ 50 dB. Anforderungen Geräusche aus Wasserinstallationen, ge Geräusche aus Wasserinstallationen und gebäudetechnischen Anlagen, Nutzergeräusch Urinieren (L _{AF.max.n})		ischen Anla ≤ 35 dB(A)	-	-		≤20	dB(A)	7
Wenn keine tieffrequenten Geräuschanteile vorliegen, wer renz der C- und A-bewerteten Summenpegel gemäß DIN Die Anforderungen gelten auch für Heizungs- und Lüftung Beim messtechnischen Nachweis kann alternativ für die E	45680:1997 sanlagen im Bewertung au	und DIN 456 eigenen Ber	80-1 Beiblatt eich.	1:1997 klein		•	n, wenn die L	Diffe-
Anforderungen Nutzergeräusche und Körperschallentko	pplung							
Nutzergeräusche (L _{AF,max,n})	> 45 dB(A)	≤ 45 dB(A)	≤40 dB(A)	\leq 35 dB(A)	≤ 30 dB(A)	≤ 25 dB(A)	≤ 20 dB(A)	8
Körperschallentkopplung Kleinhammerwerk (L´ _{Kn,w})	>63 dB	≤63 dB	≤58 dB	≤53 dB	≤48 dB	≤43 dB	≤38 dB	9
Beim messtechnischen Nachweis der Nutzergeräusche kann	n alternativ fü	ir die Bewert	ung auch L _{AF}	, _{max,nT} verwer	ndet werden			
Anforderungen Außenbauteile (Luftschall)								
Luftschall (R´ _{w,ges})	-	-		Wie DIN 410)9-1 (R′ _{w,ges})		Wie DIN 4109-1	10

Geräusche aus Gaststätten, Betrieben, Praxen, u. a.

Tags	$(L_{r,n})$ $(L_{AF,max,n})$	()	≤ 35 dB(A) ≤ 45 dB(A)	()	≤ 25 dB(A) ≤ 35 dB(A)	Nicht zulässig	11
Nachts	$(L_{r,n})$ $(L_{AF,max,n})$	` '	\leq 25 dB(A) \leq 35 dB(A)	` ,	\leq 15 dB(A) \leq 25 dB(A)	Nicht zulässig	12

- Die Werte der Klasse F überschreiten die Immissionsrichtwerte der TA-Lärm.
- Die Abweichung der Werte von der TA-Lärm in der Stufe D resultiert aus der Abstimmung mit den Geräuschen aus gebäudetechnischen Anlagen. Die maximalen Schalldruckpegel sind gemäß DIN 4109-1 und DEGA-Empfehlung 30 dB(A), nach TALärm wären nachts 35 dB(A) zulässig. Diese Unschlüssigkeit wurde behoben und an die Anforderungen der gebäudetechnischen Anlagen nach DIN 4109-1 angeglichen. Weil das Schutzbedürfnis der Bewohner im Vordergrund steht dürfen Geräusche aus Betrieben nicht lauter sein als sonstige Geräusche aus gebäudetechnischen Anlagen oder Wasserinstallationen. Entsprechend wurden auch die Werte für die Beurteilungspegel angepasst.

Empfehlung für das Verhältnis A/V (äquivalente Absorptionsfläche / Volumen) in allgemein zugänglichen Treppenhäusern und Fluren von mehrgeschossigen Wohngebäuden

A/V	Keine Maßnahmen	≥0,10	≥ 0,20 oder kein gemeinsames Treppenhaus	13				
Fin AM Vorhältnig von 0.10 führt in der Pagel zu einer Nachhallzeit von ca. 1.4 hig. 1.8 c.								

DEGA-Empfehlung 103

Kennwerte für Schallschutz im eigenen Wohnbereich

Tab. Al. 13: Kennwerte für Schallschutz im eigenen Wohnbereich gem. DEGA-Empfehlung 103 Tab. 10

Lärmpegelbereich	EW1	EW2	EW3	Zeile
Luftschalldämmung Zimmertüren in/von schützenswerten Räumen, z. B. Schlaf- oder Kinderzimmer $(R_w$ der betriebsfertig eingebauten Tür ohne Nebenwege)				1
■ Offener Grundriss¹)	≥22 dB	≥27 dB	≥32 dB	
■ Geschlossener Grundriss¹)	≥17 dB	≥22 dB	≥27 dB	
Luftschalldämmung Wände ohne Türen von schützenswerten Räumen, z. B. Schlaf- oder Kinderzimmer ($(R'_w)^2$)	≥40 dB	≥43 dB	≥47 dB	2
Luftschalldämmung Decken (R'_w)	≥48 dB	≥51 dB	≥55 dB	3
Trittschalldämmung Decken vertikal und Treppen $(L_{n,w}^{'})^{3)}$	≤58 dB	≤53 dB	≤46 dB	4
Geräusche aus Wasserinstallationen (L _{AF,max,n})	≤35 dB(A)	≤ 30 dB(A)	≤25 dB(A)	5
Geräusche von Heizungs- und Lüftungsanlagen (L _{AF,max,n})	≤ 30 dB(A)	≤ 25 dB(A)	< 25 dB(A)	6

¹⁾ Bei geschlossenen Grundrissen sind wegen der zwei hintereinander liegenden Türen geringere Schalldämm-Maße für die Einzeltür angegeben als bei offenen Grundrissen.

²⁾ Wände mit Türen dürfen ein 5 dB geringeres Schalldämm-Maß (für die Wand) aufweisen.

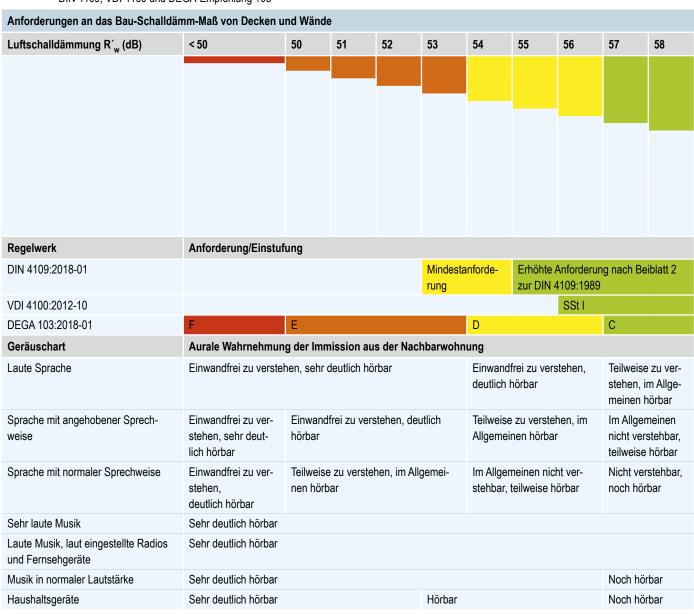
³⁾ Weichfedernde Bodenbeläge dürfen angerechnet werden.

Vergleich der Anforderungen an die Innenbauteile

Anforderungen an das Bau-Schalldämm-Maß

Vergleich der Schallschutzniveaus

Bewertung der auralen Wahrnehmung

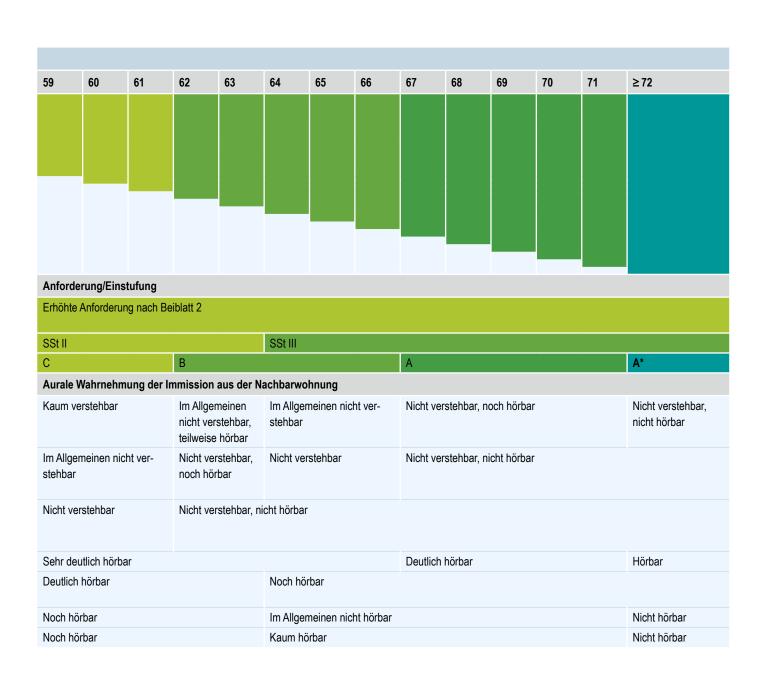

Bei der Festlegung des Schallschutzniveaus und entsprechender Ausschreibung der Schallschutzanforderungen sollte der Bauherr über die aurale Wahrnehmung der Festlegungen aufgeklärt werden. Die Tab. Al. 14 und Al. 15 zeigen die Wirksamkeit des gewählten Qualitätsniveaus und sind ausgezeichnet für Beratungsgespräche geeignet.

Die Vergleiche finden anhand der Regelwerke DIN 4109-1:2018-01, VDI 4100:2012-10 und DEGA-Empfehlung 103 (2018-03) in Anlehnung und teilweise Eigeninterpretation der Wahrnehmungstabellen aus VDI 4100 und der DEGA-Empfehlung 103 statt. Zur Vergleichbarkeit werden die nachhallzeitbezogenen Größe $D_{n,T,w}$ und $L'_{nT,w}$ aus VDI 4100:2012 mit den Bauteilkenngrößen R'_{w} und L'_{w} aus DIN 4109 und DEGA-Empfehlung 103 gleichgesetzt. Tatsächlich sind die nachhallzeitbezogenen Größen von der Raumgeometrie abhängig. (Abb. Al. 1 und Abb. Al. 2)

Der Vergleich beschränkt sich sowohl beim Luft- als auch Trittschall auf zwei angrenzende Räume im Mehrfamilien-Wohnungsbau.

Luftschall

Tab. Al. 14: Verbale Beschreibung der subjektiven Wahrnehmung von Geräuschen aus Nachbarräumen mit zugeordnetem Schallschutzniveau (Luftschallschutz) bei abendlichen A-bewerteten Grundgeräuschpegeln von 20 dB in Aufenthaltsräumen üblicher Größe in Anlehnung an DIN 4109, VDI 4100 und DEGA-Empfehlung 103

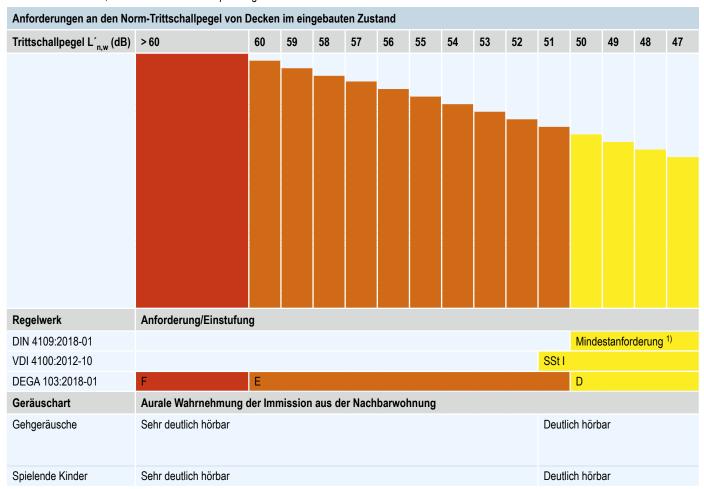


.

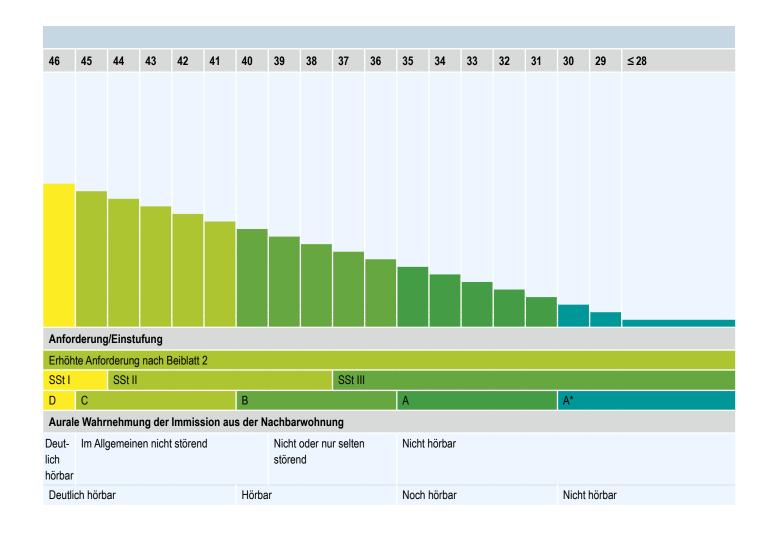
Anforderungen an das Bau-Schalldämm-Maß

► Gut zu wissen

Als auditive, aurale oder akustische Wahrnehmung bezeichnet man die Sinneswahrnehmung von Schall durch Lebewesen.


Vergleich der Anforderungen an die Innenbauteile

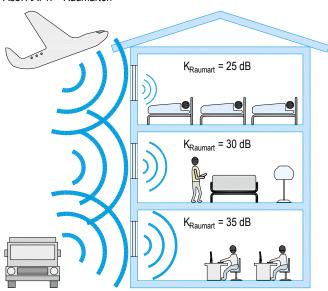
Anforderungen an den Norm-Trittschallpegel


Trittschall

Tab. Al. 15: Verbale Beschreibung der subjektiven Wahrnehmung von Geräuschen aus Nachbarräumen mit zugeordnetem Schallschutzniveau (Trittschallschutz) bei abendlichen A-bewerteten Grundgeräuschpegeln von 20 dB in Aufenthaltsräumen üblicher Größe in Anlehnung an DIN 4109, VDI 4100 und DEGA-Empfehlung 103

Für Decken, die dem Holz,- Leicht- und Trockenbau zuzuordnen sind, liegt die Mindestanforderung bis zur Überarbeitung der DIN 4109-1:2018-01 bei L´_{n,w} ≤ 53 dB. Nach der Überarbeitung werden die Anforderungen angepasst und sollen sich dann, wie im Massivbau auf L´_{n,w} ≤ 50 dB belaufen. Die Überarbeitung ist für das Jahr 2021 angesetzt.

Anforderungen an den Norm-Trittschallpegel



Anforderungen an die Luftschalldämmung von Außenbauteilen

Ermittlung der Anforderungen an Außenbauteile

Ermittlung der Anforderungen an Außenbauteile

Abb. AA. 1: Raumarten

Die Anforderungen von Außenbauteilen gelten für das gesamte Bauteil in- kl. aller Öffnungen und Einbauteilen. Dabei ist das gesamte bewertete Bau- Schalldämm-Maß von Außenbauteile R $_{\rm w,ges}^{\prime}$ vom maßgeblichen Außenlärmpegel L $_{\rm a}$ und der Raumart des schutzbedürftigen Raumes abhängig.

Es gilt folgender Formelbezug:

$$\mathbf{R'}_{\text{w,ges}} = \mathbf{L}_{\text{a}} - \mathbf{K}_{\text{Raumart}}$$
 (1)

Mit:

gen anzusetzen:

L_a = Maßgebliche Außenlärmpegel, den es zu ermittelt gilt

K_{Raumart} = Korrekturfaktoren in Abhängigkeit der Nutzung der betrachteten Räume

Die Raumarten teilen sich in drei Klassen auf:

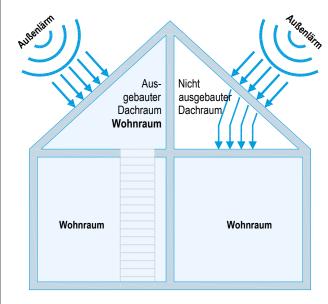
- Bettenräume in Krankenanstalten und Sanatorien K_{Raumart} = 25 dB
- Aufenthaltsräume in Wohnungen, Übernachtungsräume in Beherbergungsstätten, Unterrichtsräume und Ähnliches K_{Raumart} = 30 dE
- gungsstätten, Unterrichtsräume und Ähnliches $K_{Raumart} = 30 \text{ dB}$ Büroräume und Ähnliches $K_{Raumart} = 35 \text{ dB}$
- Der Maßgebliche Außenlärmpegel ist nach DIN 4109-2:2018-01 zu ermitteln. Sollte das berechnete, gesamte bewertete Bau-Schalldämm-Maß R $^{\prime}_{\rm w,ges}$ unter den folgenden Mindestanforderungen liegen, sind die Mindestanforderun-
- Bettenräume in Krankenhäuser und Sanatorien R′_{w nes} = 35 dB
- Aufenthaltsräume in Wohnungen, Übernachtungsräume in Beherbergungsstätten, Unterrichtsräume, Büroräume u. Ähnliches R'_{w,qes} = 30 dB

Ergibt sich das gesamte bewertete Bau-Schalldämm-Maß R $'_{\rm w,ges}$ > 50 dB, sind die Anforderungen individuell unter Berücksichtigung der örtlichen Gegebenheiten festzulegen.

Sollten im Planungsstadium ausschließlich Lärmpegelbereiche zur Berechnung von R $'_{w,ges}$ vorliegen, ist der maßgebliche Außenlärmpegel L $_{a}$ nach folgender Tabelle Tab. AA. 1 heranzuziehen.

Tab. AA. 1: Zuordnung zwischen Lärmpegelbereichen und maßgeblichem Außenlärmpegel gem. DIN 4109-1:2018-01 Tab. 7

Lärmpegelbereich	$ \begin{tabular}{ll} {\bf Maßgeblicher\ Außenlärmpegel\ L_a} \\ {\bf dB} \end{tabular} $	Zeile
1	55	1
II	60	2
III	65	3
IV	70	4
V	75	5
VI	80	6
VII	> 80 ¹⁾	7


Für maßgebliche Außenlärmpegel L_a > 80 dB sind die Anforderungen aufgrund der örtlichen Gegebenheiten festzulegen.

Anforderungen an Dächer und Decken gegen Außenlärm

Bei voll ausgebauten Dachgeschossen gelten die Anforderungen analog den Anforderungen an Außenbauteilen.

Bei nicht ausgebauten Dachräumen ist die Anforderung durch die Kombination Dach und Decke gemeinsam zu erfüllen. Die Anforderung ist erfüllt, wenn die Decke alleine um nicht mehr als 10 dB unter dem Anforderungswert R $^{\prime}_{\text{w.des}}$ liegt.

Abb. AA. 2: Anforderungen an Dächer und Decken gegen Außenlärm

- Ausgebautes Dachgeschoss Anforderung R´_{w,qes}
- Nicht ausgebautes Dachgeschoss inkl. Decke Anforderung an Decke alleine R´_{w,qes} - 10 dB

Gem. DIN 18005-1:2002-07 Anhang A.2

Berechnung der Luftschalldämmung von Außenbauteilen

Der Nachweis zur Einhaltung der Anforderungen gilt nach DIN 4109-2:2018-01 als geführt, wenn nachfolgende Bedingung erfüllt ist:

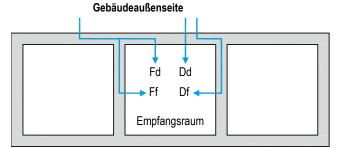
$$R'_{w,qes} - 2 dB \ge erf. R'_{w,qes} + K_{AL}$$
 (2)

Mit:

2 dB = Vereinfachte Prognoseunsicherheit

R'_{w,ges} = Erforderliches gesamtes bewertetes Bau-Schalldämm-Maß nach DIN 4109-1:2018-01 in dB

 $\mathbf{K}_{\mathbf{AL}}$ = Korrekturwert für das erf. R $_{\mathrm{w,ges}}$ für den Außenlärm nach DIN 4109-1:2018-01 in dB


Der Korrekturwert K_{AL} wird in Abhängigkeit der vom rauminneren gesehenen Außenbauteilfläche S_S und der Grundfläche des Raumes S_G wie folgt gebildet:

$$K_{AL} = 10 lg \left(\frac{s_s}{0.8 \cdot S_G} \right) dB$$
 (3)

Für Räume mit mehreren Außenbauteilen wie beispielsweise Eckräume (zwei Außenwände) oder Räume im Dachgeschoss mit Drempel/Kniestock und Dachflächen ist die Summe der Außenbauteilflächen aus den Flächen jedes Außenbauteils zu bilden.

Eine detaillierte Betrachtung zur Ermittlung des gesamten bewerteten Bau-Schalldämm-Maßes verlangt die Einbeziehung aller an der Schallübertragung von außen nach innen beteiligen Bauteile inkl. Nebenwege (siehe Abb. AA. 3).

Abb. AA. 3: Schallübertragung von außen nach innen inkl. Nebenwege

In den meisten Fällen spielen die Schallübertragungen über die Nebenwege jedoch kaum eine Rolle, sodass sich das gesamte bewertete Bau-Schalldämm-Maß vereinfacht darstellen lässt.

$$R'_{w,ges} = -10lg \left[\frac{1}{S_{ges}} \sum_{i=1}^{n} S_i \cdot 10^{-\frac{R_{i,w}}{10}} \right] dB$$
 (4)

Mit:

S_{ges} = Gesamte Außenbauteilfläche in m²

S_i = Fläche der einzelnen Bauteile in m²

R_{i.w} = Schalldämm-Maß der einzelnen Bauteile

Dies gilt laut DIN 4109-2:2018-01 jedoch nur wenn die Bedingung $R'_{wres} \le 40$ dB erfüllt ist.

Aus der aufgeführten Formel wird ersichtlich, dass sämtliche Einbauteile in der Fassade einen Einfluss auf das zu erwartende Schalldämm-Maß haben. Somit müssen zur Berechnung die Schalldämm-Maße und Abmessungen jeder verbauten Komponente bekannt sein (siehe auch Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de Kapitel "Bestimmung des resultierenden Schalldämm-Maßes zusammengesetzter Bauteile").

Für die Nachweisführung muss der maßgebliche Außenlärmpegel bestimmt werden.

Unabhängig von der Art der Lärmbelastung:

- Straßenverkehr
- Schienenverkehr
- Wasserverkehr
- Luftverkehr
- Gewerbe- und Industrieanlagen

gilt, dass der maßgebliche Außenlärmpegel bei einer Betrachtung der von der maßgeblichen Lärmquelle abgewandten Gebäudeseite:

- Bei einer offenen Bebauung um 5 dB(A)
- Bei geschlossener Bebauung bzw. Innenhöfen um 10 dB(A)

gemindert werden darf.

Bei der Berechnung des maßgeblichen Außenlärmpegels wird zwischen Tages- und Nachtzeit unterschieden.

- Die Tageszeit beschränkt sich dabei auf die Zeitspanne von 6:00 Uhr bis 22:00 Uhr.
- Die Nachtzeit geht von 22:00 Uhr bis 6:00 Uhr. Für Räume, die überwiegend zum Schlafen genutzt werden muss zusätzlich aufgrund der erhöhten Störwirkung ein Zuschlag berücksichtigt werden.

Für die Nachweisführung ist der maßgebliche Außenlärmpegel aus Tagesbzw. Nachtzeitbetrachtung anzusetzen, der eine erhöhte Anforderung an die Außenbauteile verlangt.

Die Bestimmung des maßgeblichen Außenlärmpegels kann nach DIN 4109-2:2018-01 durch Addition von 3 dB über die Berechnung des Beurteilungspegels nach DIN 18005-1:2002-07 mit Hilfe des Nomogrammverfahrens sowie nach der sechzehnten Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes 16. BImSchV erfolgen.

Aufgrund der Komplexität des Themas beschränkt sich dieser Teil ausschließlich auf den Straßenverkehrslärm von langen, geraden Straßen und den Berechnungsverfahren der 16. BimSchV sowie dem vereinfachten Verfahren nach DIN 18041-1:202-07 A2.

Gem. BlmSchV - Anlage 1

16. BlmSchV – Anlage 1: Berechnung des Beurteilungspegels für Straßen

$$L_{r,T} = L_{m,T}^{(25)} + D_{V} + D_{StrO} + D_{Sta} + D_{S_{1}} + D_{BM} + D_{B} + K$$
 (5)

$$L_{r,N} = L_{m,N}^{(25)} + D_{V} + D_{StrO} + D_{Stg} + D_{S_{\perp}} + D_{BM} + D_{B} + K$$
 (6)

Mit:

L_{r,T} = Tages-Beurteilungspegel in dB(A) zwischen 6.00 Uhr bis 22:00 Uhr.

L_{r,N} = Nacht-Beurteilungspegel in dB(A) zwischen 22:00 Uhr bis 6:00

D_V = Korrekturwert zur Berücksichtigung unterschiedlicher Höchstgeschwindigkeiten in Abhängigkeit des Lkw-Anteils.

 $\mathbf{D}_{\mathsf{StrO}}$ = Korrekturwert für verschiedene Straßenoberflächen.

D_{Sta} = Korrekturwert für Straßensteigungen und Straßengefälle.

 $\mathbf{D_{S_1}}$ = Abstandskorrektur zwischen Emissionsort und Immissionsort.

 D_{BM} = Korrektur aufgrund von Boden- und Meteorologiebedämpfung in Abhängigkeit der mittleren Höhe und Entfernung zwischen Emissions- und Immissionsort.

D_B = Korrektur aufgrund von Hindernissen und Reflexionen auf dem Ausbreitungsweg zwischen Emissionsort und Immissionsort nach der Richtlinie für den Lärmschutz an Straßen (RLS-90).
 Anmerkung: Zur Vereinfachung wird aufgrund der Komplexität der Ermittlung des Korrekturwertes DB der Korrekturwert auf 0 dB gesetzt. Ggf. vorhandene Lärmschutzmaßnahmen bleiben durch dieses Vorgehen genauso unberücksichtigt wie Mehrfachreflexionen zwischen Häuserfronten.

K = Korrekturwert zur Berücksichtigung von lichtzeichengeregelter Kreuzungen (Ampeln).

Die folgenden Berechnungen gelten nur für lange gerade Straßen. Sollten die Bedingungen von dieser Idealisierung abweichen, ist die betrachtete Strecke nach RLS-90 in Teilstücke zu gliedern, wobei jedes Teilstück separat betrachtet werden muss.

Abb. AA. 4: Mittlungspegel $L_{m,T}^{(25)}$ bzw. $L_{m,N}^{(25)}$ in dB(A)

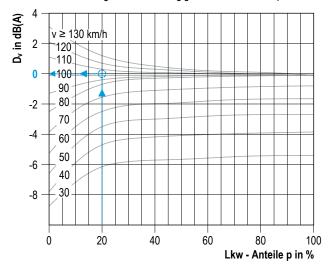
Ausgangsdaten:

- Abstand: 25 m von der Mitte des Fahrbahnstreifens
- Straßenoberfläche: nicht geriffelter Gußasphalt
- Zulässige Höchstgeschwindigkeit 100 km/h
- Ausbreitungsbedingungen: freie Schallausbreitung h_m = 2,25 m

$$L_{m,T}^{(25)}$$
 bzw. $L_{m,N}^{(25)} = 37.3 + 10 \cdot lg [M (1 + 0.082 \cdot p)] dB(A)$ (7)

Tab. AA. 2: Maßgebende Verkehrsstärke M in Kfz/h und maßgebende Lkw-Anteile p (über 2,8 t zulässiges Gesamtgewicht) in %

Straßengattung	Tags (6 bis 22 Uhr)		Nachts (22 bis 6 Uhr)		Zeile
	M Kfz/h	р %	M Kfz/h	р %	
Bundesautobahn	0,06 DTV	25	0,014 DTV	45	1
Bundesstraße	0,06 DTV	20	0,011 DTV	20	2
Landes-, Kreisstraße Gemeindeverbindungstraße	0,06 DTV	20	0,008 DTV	10	3
Gemeindestraße	0,06 DTV	10	0,011 DTV	3	4

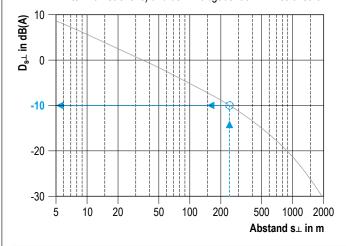

Zur Berechnung der maßgebenden Verkehrsstärke M ist die durchschnittliche, tägliche Verkehrsstärke (DTV) notwendig. Diese Angaben können unter anderem bei der Bundesanstalt für Straßenwesen (BASt) abgefragt werden.

Gem. BlmSchV - Anlage 1

Abb. AA. 5: Korrektur D_V in dB(A) für unterschiedliche zulässige Höchstgeschwindigkeiten in Abhängigkeit vom Lkw-Anteil p

$$\begin{split} D_{v} &= L_{Pkw} - 37, 3 + 10 \cdot lg \left[\frac{100 + (10^{0.1 \cdot D} - 1) \cdot p}{100 + 8,23 \cdot p} \right] dB(A) \\ L_{Pkw} &= 27, 7 + 10 \cdot lg \left[1 + (0,02 \cdot v_{Pkw})^{3} \right] \\ L_{Lkw} &= 23, 1 + 12, 5 \cdot lg \left(v_{Lkw} \right) \\ D &= L_{Lkw} - L_{Pkw} \end{split} \tag{8}$$

Tab. AA. 3: Korrektur D_{StrO} in dB(A) für unterschiedliche Straßenoberflächen bei zulässigen Höchstgeschwindigkeiten \geq 50 km/h


Straßenoberfläche	D _{StrO} in dB(A)	Zeile
Nicht geriffelte Gußasphalte, Asphaltbeton oder Splittmastixasphalt	0	1
Beton oder geriffelte Gußasphalte	2	2
Pflaster mit ebener Oberfläche	3	3
Pflaster	6	4

Tab. AA. 4: Korrektur D_{Sta} in dB(A) für Steigung oder Gefälle

Steigung/Gefälle in %	D _{Stg} in dB(A)	Zeile
≤ 5	0	1
6	0,6	2
7	1,2	3
8	1,8	4
9	2,4	5
10	3,0	6
Für jedes zusätzliche Prozent	0,6	7

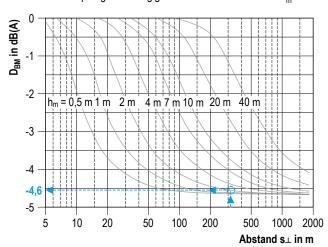

Zwischenwerte sind linear zu interpolieren

Abb. AA. 6: Pegeländerung Ds_in dB(A) durch unterschiedliche Abstände s_ zwischen dem Emissinsort (0,5 m über Mitte des betrachteten Fahrstreifens) und dem maßgebenden Immissionsort

$$Ds_{\perp} = 15.8 - 10lg (s_{\perp}) - 0.0142 \cdot (s_{\perp})^{0.9} dB(A)$$
 (9)

Abb. AA. 7: Pegeländerung D_{BM} in dB(A) durch Boden- und Meterologiedämpfung in Abhängigkeit von der mittleren Höhe h_m

$$D_{BM} = -4.8 \cdot exp \left[-\left(\frac{h_m}{S_{\perp}} \cdot \left(8.5 + \frac{100}{S_{\perp}}\right)\right)^{1.3} \right] dB(A)$$
 (10)

Tab. AA. 5: Zuschlag K in dB(A) für erhöhte Störwirkung von lichtzeichengeregelten Kreuzungen und Einmündungen

Abstand des Imissionsortes vom nächsten Schnitt- punkt der Achsen von sich kreuzenden oder zusam- mentreffenden Fahrstreifen	K in dB(A)	Zeile
Bis 40 m	3	1
Über 40 bis 70 m	2	2
Über 70 bis 100 m	1	3

KNAUF

Anforderungen an die Luftschalldämmung von Außenbauteilen

Gem. BlmSchV - Anlage 1

Wirken mehrere Beurteilungspegel auf einen Empfänger ein, können diese nach folgendem Diagramm zu einem Beurteilungspegel addiert werden. Bei drei oder mehr Beurteilungspegeln kann die Summe aus zwei Pegeln gebildet werden und hierzu die weiteren Pegel addiert werden

Abb. AA. 8: Gesamtbeurteilungspegel $L_{r,ges}$ aus zwei Beurteilungspegeln $L_{r,1}$ und $L_{r,2}$

$$L_{r,ges} = 10lg (10^{0.1 \cdot L_{r,1}} + 10^{0.1 \cdot L_{r,2}})$$
 (11)

Beispielrechnung:

Wohnhaus an der B8 Kitzingen

■ Raumart: Aufenthaltsraum in Wohnungen K_{Raumart} = 30 dB
■ Kfz/Tag DTV: 19162 (Angabe vom Bundesamt für Straßenwesen bast, Werte von 2016)

■ Zulässige Maximalgeschwindigkeit: 100 km/h
 ■ Straßenoberfläche: Nicht geriffelter Gußasphalt
 ■ Straßensteigung: ≤ 5%

■ Abstand zwischen der Mitte der Fahrbahn und dem Wohnhaus: 250 m

 Höhenunterschied zwischen der Fahrbahn 0,5 m und dem zu schützenden Raum im Wohnhaus:
 2 m

■ Kein Zuschlag für lichtzeichengeregelte Anlagen (Ampeln)

■ Außenwandfläche des betreffenden Raumes: 9,8 m²

■ Grundfläche des betreffenden Raumes: 17 m²

■ Fensterfläche 4 m²

■ Schalldämm-Maß der Fenster: 35 dB

■ Schalldämm-Maß der Außenwand:

z. B. W551.de mit Installationsebene 62 dB

Berechnung der Anforderung

(1) erf.R
$$'_{w, ges}$$
 = L_a - K_{Raumart} + K_{AL}

Bestimmung des maßgeblichen Beurteilungspegels $L_a = L_r$ für die Tagund Nachtzeit

$$(5) \ L_{r,T} = L_{m,T}^{\ (25)} + D_V^{\ } + D_{StrO}^{\ } + D_{Stg}^{\ } + D_{S^{\perp}}^{\ } + D_{BM}^{\ } + D_B^{\ } + K$$

$$(6) \ L_{r,N}^{\ } = L_{m,N}^{\ } ^{(25)} + D_V^{\ } + D_{StrO}^{\ } + D_{Stg}^{\ } + D_{S^{\perp}}^{\ } + D_{BM}^{\ } + D_B^{\ } + K$$

Bestimmung der maßgeblichen Verkehrsstärke M sowie des Mittelungspegels jeweils für Tags und Nachts

■ Durchschnittliches tägliches Verkehrsaufkommen DTV = 19162

Nach Tab. AA. 2

 M_{Tag} = 0,06 · DTV = 0,06 · 19162 = 1145 Kfz/h Prozentualer Lkw-Anteil: 20%

 M_{Nacht} = 0,014 · DTV = 0,014 · 19162 = 269 Kfz/h Prozentualer Lkw-Anteil: 20%

• Nach Abb. AA. 4 $L_{m,T}^{(25)} = 72 \text{ dB}$ $L_{m,N}^{(25)} = 66 \text{ dB}$

- Bestimmung des Korrekturwertes für unterschiedliche Höchstgeschwindigkeiten D,
 - Nach Abb. AA. 5
 D_v = 0 dB

■ Bestimmung des Korrekturwerts für unterschiedliche Straßenoberflächen

Nach Tab. AA. 3
 Nicht geriffelter Gußasphalt

 $D_{StrO} = 0 dB$

 Bestimmung des Korrekturwertes für Straßenneigungen (Steigung oder Gefälle) D_{Sta}

Nach Tab. AA. 4

 $D_{Stg} = 0 dB$

Bestimmung der Abstandskorrektur zwischen Immissionsort und Emissionsort s₁

Nach Abb. AA. 6

 $s_{\perp} = -10 \text{ dB}$

■ Bestimmung der Boden- und Meteorologiebedämpfung D_{BM}

Nach Abb. AA. 7

 $D_{BM} = -4.6 dB$

■ Bestimmung des Korrekturwertes zur Berücksichtigung von Störungen durch lichtzeichengeregelte Anlagen

Nach Tab. AA. 5
 Keine Ampel im n\u00e4heren Umkreis
 K = 0.4B

■ Berechnung des Beurteilungspegels für Tag und Nacht

$$L_{rT}$$
 = 72 dB + 0 dB + 0 dB + 0 dB - 10 dB - 4,6 dB + 0 dB

 $L_{r,T} = 57,4 \text{ dB}$

$$L_{r,N}$$
 = 66 dB + 0 dB + 0 dB + 0 dB - 10 dB - 4,6 dB + 0 dB

 $L_{r,N} = 51,4 dB$

Aufgrund des höheren Tages-Beurteilungspegel ist dieser für die weiteren Berechnungen anzusetzen.

Bestimmung der Anforderung an das resultierende Schalldämm-Maß + 3 dB (Korrekturwert aufgrund der Nachweisführung nach der 16. BImSchV) aus der Summe der Außenbauteile

(1) erf.
$$R'_{w, ges} = L_a - K_{Raumart} + 3 dB$$

erf.
$$R'_{w,ges}$$
 = 57,4 dB – 30 dB + 3 dB

Bestimmung der raumgeometrischen Korrektur \mathbf{K}_{AL}

(3) K_{AL} = 10lg
$$\left(\frac{s_s}{0.8 \cdot S_c}\right)$$
 dB

 $K_{AI} = 10lg (9.8m^2 / (0.8 \cdot 17 m^2))$

$$K_{AI} = -1.4 \text{ dB}$$

Berechnung des resultierenden Schalldämm-Maß des Außenbauteils bestehend aus Wand und Fenster.

Die Berechnung zusammengesetzter Bauteile erfolgt analog dem Kapitel Berechnung dargestellt in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de:

(4)
$$R'_{w,ges} = -10lg \left[\frac{1}{S_{ges}} \sum_{i=1}^{n} S_i \cdot 10^{-\frac{R_{i,w}}{10}} \right] dB$$

$$R'_{w,ges} = -10lg \left[\frac{1}{9.8 \text{ m}^2} (5.8 \text{ m}^2 \cdot 10^{-\frac{62 \text{ dB}}{10}} + 4 \text{ m}^2 \cdot 10^{-\frac{35 \text{ dB}}{10}} \right]$$

R'_{w,ges}= 38,9 dB

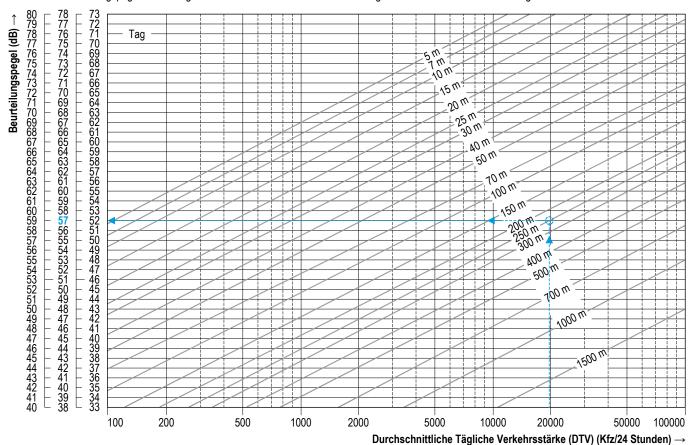
Nachweisführung

(2)
$$R'_{w,ges}$$
 – 2 dB \geq erf. $R'_{w,ges}$ + K_{AL}

 $38.9 \text{ dB} - 2 \text{ dB} \ge 30.4 \text{ dB} - 1.4 \text{ dB}$

36,9 dB ≥ 29 dB eingehalten

Gem. DIN 18005-1:2002-07 Anhang A.2


DIN 18005-1:2002-07 Anhang A.2 Straßenverkehr

Vereinfachtes Verfahren:

Das im Folgenden beschriebene Verfahren kann zur Abschätzung der Beurteilungspegel für den Straßenverkehrslärm bei langen, geraden Straßen und freier Sichtbeziehung zwischen Immissionsort und Emissionsort verwendet werden.

Beurteilungspegel zu den Tageszeiten zwischen 6:00 Uhr bis 22:00 Uhr

Abb. AA. 9: Beurteilungspegel zu den Tageszeiten zwischen 6:00 Uhr bis 22:00 Uhr gem. DIN 18005-1:2002-07 Anhang A.2 Bild A.1

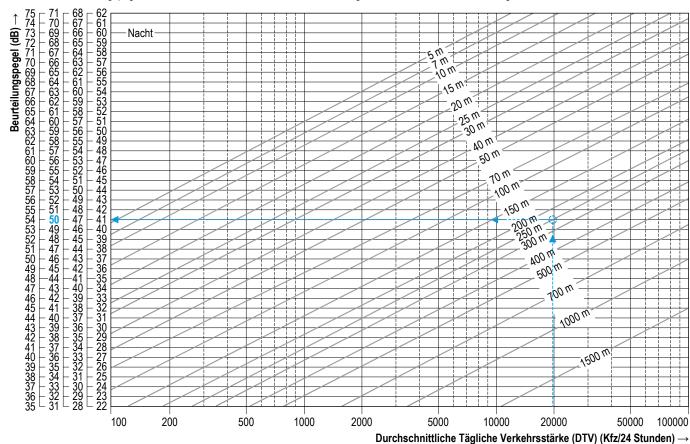
Bundes-, Landes-, Kreis- und Gemeindeverbindungsstraße Stadt- und Gemeindestraßen Straßengattung

Autobahn

Korrekturen für Sonderfälle Zulässige Höchstgeschwindigkeit

■ Auf Autobahnen 80 km/h oder auf Stadtstraßen 30 km/h: - 2,5 dB

Straßenoberfläche


- Offenporiger Asphalt auf Außerortsstraßen mit zulässigen Höchstgeschwindigkeiten von mehr als 60 km/h: - 3 dB
- Unebenes Pflaster auf Straßen mit zulässigen Höchstgeschwindigkeiten von 50 km/h und mehr: + 6 dB
- Unebenes Pflaster auf Straßen mit zulässigen Höchstgeschwindigkeiten von 30 km/h und mehr: + 3 dB

Befindet sich ein Immissionsort in weniger als 100 m Entfernung von einer Lichtsignalanlage, sollte ein Zuschlag von 2 dB auf den Beurteilungspegel erfolgen. Auch die Beurteilungspegel für Immissionsorte in Straßenschluchten (beidseitige, mehrgeschossige und geschlossene Bebauung) sollten mit 2 dB beaufschlagt werden.

Gem. DIN 18005-1:2002-07 Anhang A.2

Beurteilungspegel in den Nachtzeiten zwischen 22:00 bis 6:00 Uhr

Abb. AA. 10: Beurteilungspegel in den Nachtzeiten zwischen 22:00 bis 6:00 Uhr gem. DIN 18005-1:2002-07 Anhang A.2 Bild A.2

Bundes-, Landes-, Kreis- und Gemeindeverbindungsstraße Stadt- und Gemeindestraßen

Straßengattung

Autobahn

Korrekturen für Sonderfälle Zulässige Höchstgeschwindigkeit

 Auf Autobahnen 80 km/h oder auf Stadtstraßen 30 km/h: - 2,5 dB

Straßenoberfläche

- Offenporiger Asphalt auf Außerortsstraßen mit zulässigen Höchstgeschwindigkeiten von mehr als 60 km/h: - 3 dB
- Unebenes Pflaster auf Straßen mit zulässigen
 Höchstgeschwindigkeiten von 50 km/h und mehr: + 6 dB
- Unebenes Pflaster auf Straßen mit zulässigen
 Höchstgeschwindigkeiten von 30 km/h und mehr: + 3 dB

Befindet sich ein Immissionsort in weniger als 100 m Entfernung von einer Lichtsignalanlage, sollte ein Zuschlag von 2 dB auf den Beurteilungspegel erfolgen. Auch die Beurteilungspegel für Immissionsorte in Straßenschluchten (beidseitige, mehrgeschossige und geschlossene Bebauung) sollten mit 2 dB beaufschlagt werden.

Die Prognose der Beurteilungspegel gilt für nicht geriffelten Gussasphalt ohne Geschwindigkeitsbegrenzung bzw. für Gemeindestraßen mit einer zulässigen Höchstgeschwindigkeit von 50 km/h.

Beispielrechnung:

Wohnhaus an der B8 Kitzingen

■ Raumart: Aufenthaltsraum in Wohnungen K_{Raumart} = 30 dB
 ■ Kfz/Tag DTV: 19162 (Angabe vom Bundesamt für Straßenwesen

bast, Werte von 2016)

■ Straßenoberfläche: Nicht geriffelter Gußasphalt

Abstand zwischen der Mitte der Fahrbahn und dem Wohnhaus: 250 m

Bestimmung des Beurteilungspegels für Tag und Nacht

Abgelesen aus den Diagrammen Abb. AA. 9 und 10:

$$L_{r,T} \approx 57 \text{ dB}$$

 $L_{r,N} \approx 50 \text{ dB}$

Aufgrund des höheren Tages-Beurteilungspegel ist dieser für weitere Berechnungen anzusetzen (siehe Berechnungsbeispiel unter Kapitel "16. BImSchV"):

Bestimmung der Anforderung an das resultierende Schalldämm-Maß + 3 dB (Korrekturwert aufgrund der Nachweisführung nach DIN 18005-1:2002-07 Anhang A.2)

erf.
$$R'_{w, ges} = L_a - K_{Raumart} + 3 dB$$

erf.
$$R'_{w,ges}$$
 = 57 dB - 30 dB + 3 dB

erf.
$$R'_{w,qes}$$
 = 30 dB

Beispielhafte Berechnung des resultierenden Schalldämm-Maßes von Außenbauteilen sind im Kapitel zuvor "Anforderungen an die Luftschalldämmung von Außenbauteilen - Gem. BImSchV" dargestellt.

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 lphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte

Profi-Lösungen für Zuhause

Knauf Design

Oberflächenkompetenz

Knauf Gips

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

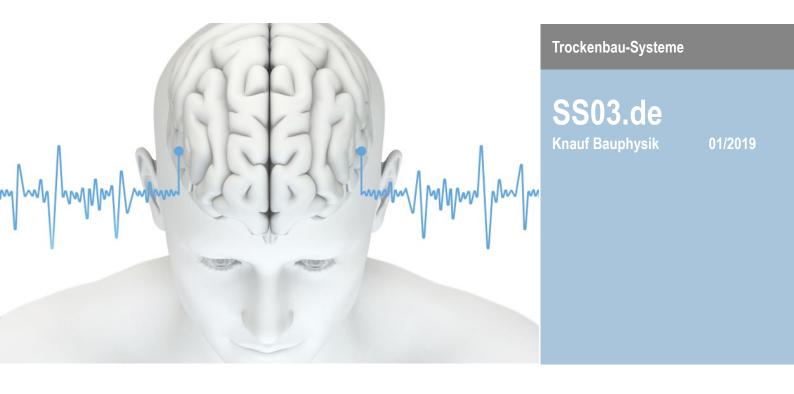
Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke

Knauf PFT

Maschinentechnik und Anlagenbau


Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme

Trockenmörtel für Neubau und Sanierung

Schallschutz mit Knauf

Ermittlung der Schalldämmung im eingebauten Zustand

Inhalt

Nutzungshinweise	
Hinweise	4
Hinweise zum Dokument	4
Quellennachweis	4
Berechnungen und Eingangsdaten für die Berechnung	
Vorwort	6
Eingangsdaten zur Ermittlung des Schalldämm-Maßes im eingebauten Zustand	6
Schalldämm-Maße im eingebauten Zustand	
Gem. DIN 4109	8
Berechnungsverfahren	8
Knauf Verfahren Mischbauweisen und Holz,- Leicht,- und Trockenbau	10
Knauf-Tabellen- und Dreiecksverfahren	10
Norm-Trittschallpegel von Decken im Massivbau	
Gem. DIN 4109	16
Bestimmung des Norm-Trittschallpegels im eingebauten Zustand im Massivbau	16
Tabellen- und Diagrammverfahren	18
Norm-Trittschallpegel von Decken im Holzbau	
Gem. DIN 4109	20
Bestimmung des Norm-Trittschallpegels im eingebauten Zustand für den reinen Holzbau	20
Norm-Trittschallpegel von Holzbalkendecken mit Massivbauflanken	
Nach Knauf Verfahren	23
Bestimmung des Norm-Trittschallpegels im eingebauten Zustand von Holzbalkendecken mit massiven flankierenden Wa	an-
den	23
Schalldämm-Maß von Massivwänden und -decken	
Gem. DIN 4109 Teil 2 und Teil 32	24
Berechnungsverfahren	24
Diagrammverfahren	25
Verbesserung der Luftschalldämmung durch Vorsatzkonstruktionen	
Vorsatzschalen, Unterdecken und Estrich auf Dämmschicht	26
Gem. DIN 4109 Teil 34	26
Diagrammverfahren	28
Berücksichtigung von Öffnungen und zusammengesetzten Bauteilen	
Gem. DIN 4109	30
Bestimmung des resultierenden Schalldämm-Maßes zusammengesetzter Bauteile	30
Eingangsdaten für den rechnerischen Nachweis	
Bemessungsgewichte für den Schallschutz	33
Flankierende Bauteile	34
Schall-Längsdämm-Maß	34
Kritische Flanken	
Stoßstellenausbildung	35

Flankierende Wände	
Norm-Flankenpegeldifferenz D _{n,f,w}	36
Flankierende Wände – Norm-Flankenpegeldifferenz von Metallständerwänden gem. DIN 4109-33:2016	36
Flankierende Wände – Norm-Flankenpegeldifferenz von Metallständerwänden	37
Flankierende Wände – Norm-Flankenpegeldifferenz von biegesteifen Wänden mit biegeweicher Vorsatzschale	38
Flankierende Wände – Norm-Flankenpegeldifferenz von Holzständerwänden in Anlehnung an Beiblatt 1 zur DIN 4109:1989 und DIN 4109-33	39
Flankierende Decken	
Norm-Flankenpegeldifferenz D _{n,f,w}	40
Flankierende Decken – Norm-Flankenpegeldifferenz von Massivdecken mit Unterdecken	40
Flankierende Raumakustikdecken	
Norm-Flankenpegeldifferenz D _{n,f,w}	42
Flankierende Decken – Norm-Flankenpegeldifferenz von Raumakustik-Plattendecken	42
Flankierende Decken – Norm-Flankenpegeldifferenz von Raumakustik-Kassettendecken	43
Flankierende Decken	
Norm-Flankenpegeldifferenz D _{n,f,w}	44
Flankierende Decken – Norm-Flankenpegeldifferenz von Massivdecken mit Mörtelestrich	44
Flankierende Decken – Norm-Flankenpegeldifferenz von Holzbalkendecken mit Unterdecke	
Flankierende Decken – Norm-Flankenpegeldifferenz von Holzbalkendecken mit Fertigteilestrich	46
Sonstige Flankenübertragung	
Schallübertragung von Metallständerwänden über Trenndecken uwände	47
Norm-Flankenpegeldifferenz von Mischbauweisen in horizontaler und vertikaler Richtung	47
Flankierende Dächer	
Flankierende Dächer – Norm-Flankenpegeldifferenz von Sparrendächern in Mehrfamilienwohnhäuser	48
Flankierende Dächer - Norm-Flankenpegeldifferenz von Sparrendächern von Reihen- und Doppelhaushälften	49
Berechnung der Lage der Koinzidenzgrenzfrequenz	
Einbrüche in der Schalldämmung	54
Berechnung der Lage der Koinzidenzgrenzfrequenz	54
Berechnung der Lage der Resonanzfrequenz	
Einbrüche in der Schalldämmung	55
Berechnung der Lage der Resonanzfrequenz	55

Nutzungshinweise

Knauf

Hinweise zum Dokument

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

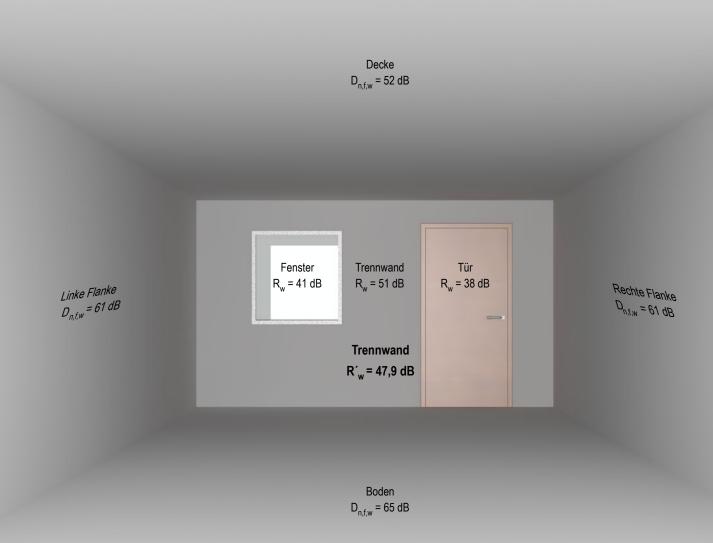
Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Weitere Broschüren des Knauf Schallschutzordners: Bauakustik

- Grundlagen SS01.de
- Anforderungen an die Bauteile SS02.de
- Innenwände SS04.de
- Decken SS05.de
- Außenbauteile SS06.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de


Angewendete Normen und Richtlinien:

- DIN 4109:1989
- Beiblatt 1 zu DIN 4109:1989
- DIN 4109-1:2018
- DIN 4109-2:2018-01
- DIN 4109-32:2016-07
- DIN 4109-33:2016-07
- DIN 4109-34:2016-07
- DIN 18005-1:2002-07 Anhang A.2
- Sechzehnte Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verkehrslärmschutzverordnung - 16. BImSchV) vom 12.06.1990, geändert am 18.12.2004 – Anlage 1

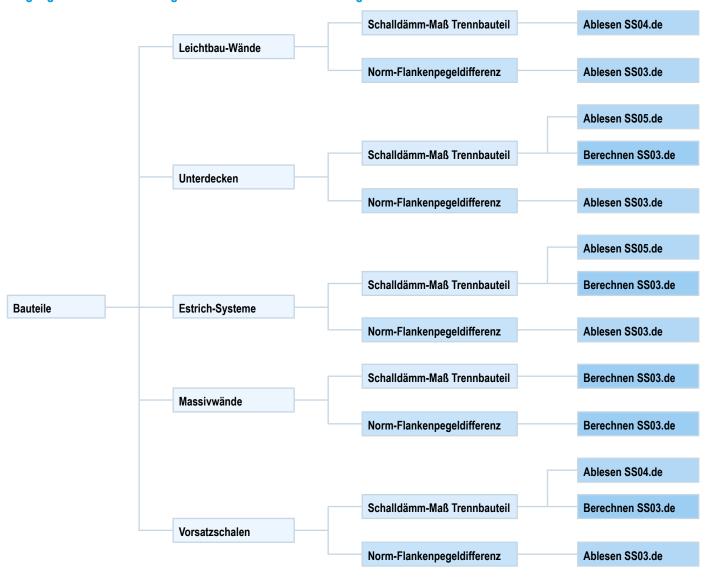
Quellennachweis

- [1] W. Fassold, W. Veres: Schallschutz + Raumakustik in der Praxis, Huss-Medien GmbH Berlin 2003
- [2] C. Zürcher, T. Frank: Bauphysik Bau & Energie, vdf Hochschulverlag AG 2010
- [3] Hohmann, Setzer, Wehling: Bauphysikalische Formeln und Tabellen, Werner Verlag 2004

Vorwort

Berechnungen und Eingangsdaten für die Berechnung

Vorwort


Vorwort

Bei der Schallübertragung zwischen zwei Räumen sind neben dem direkten Schalldurchgang über das trennende Bauteil immer auch die Schallübertragungen über die flankierenden Bauteilen zu berücksichtigen. Das beste trennende Bauteil nutzt nichts, wenn ein flankierendes Bauteil eine geringe Norm-Flankenpegeldifferenz besitzt und somit den Schallschutz beschränkt.

In den folgenden Kapiteln werden Berechnungsverfahren nach DIN 4109-2:2018-01, Tabellen- und Diagrammverfahren zur vereinfachten Handhabung auf Grundlage der DIN 4109, sowie Knauf-Verfahren die teilweise von den Berechnungsverfahren der Norm losgelöst sind aufgeführt.

Die notwendigen Eingangsdaten zur Berechnung des Schalldämm-Maßes im eingebauten Zustand sowie des Norm-Trittschallpegels im eingebauten Zustand können aus den Unterlagen SS04.de, SS05.de und SS06.de sowie die Norm-Flankenpegeldifferenzen unterschiedlichster Konstruktionen aus dieser Unterlagen entnommen werden.

Eingangsdaten zur Ermittlung des Schalldämm-Maßes im eingebauten Zustand

Berechnung der Luftschalldämmung

Schalldämm-Maße im eingebauten Zustand

Gem. DIN 4109

Berechnungsverfahren

Bei der Berechnung des Luftschalldämm-Maßes im eingebauten Zustand wird nach DIN 4109 zwischen 3 Bauweisen unterschieden:

- Holz-, Leicht- und Trockenbau
- Massivbau
- Skelett- und Mischbauweise

Massivbau und Skelett- und Mischbauweise

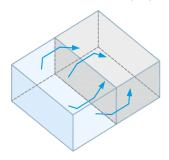
Die Nachweisführung für den Massivbau sowie die Skelett- und Mischbauweise kann näherungsweise nach dem vereinfachten Knauf-Verfahren geführt werden. (siehe Seite 10)

Holz- Leicht- und Trockenbau

Im Holz-, Leicht- und Trockenbau müssen zur Ermittlung der Luftschalldämmung R'_w 5 Übertragungswege betrachtet werden.

- Schallübertragung über das trennende Bauteil. Kennzeichnende Größe R_{Dd,w}
- Schallübertragung über die vier flankierenden Bauteile. Bei einer horizontalen Schallübertragungsrichtung (Trennbauteil ist die Trennwand, Abb. BL. 1, links) sind das in aller Regel:
 - Innenwand
 - Außenwand
 - Boden
 - Decke

Bei einer vertikalen Schallübertragungsrichtung (Trennbauteil ist die Decke, Abb. BL. 1, rechts) sind das in aller Regel:


 Alle vier aufgehenden Wände. Bei Eckräumen 2 Außenwände und 2 Innenwände. Ansonsten 1 Außenwand und 3 Innenwände.

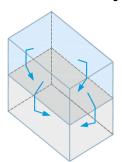

Die kennzeichnende Größe zur Berücksichtigung der Schallübertragung über die flankierenden Bauteile ist das Flankenschalldämm-Maß R_{Ff.w}

Abb. BL. 1: Schallübertragungswege über flankierenden Bauteile

Horizontale Schallübertragung

Sämtliche Angaben zum Direktschalldämm-Maß von Holz-, Leicht- und Trockenbauteilen können aus der Broschüre Innenwände SS04.de entnommen werden.

Das bewertete Flankenschalldämm-Maß R_{Ff.w} wird aus der bewerteten Norm-Flankenpegeldifferenz D_{nf.w} und zwei raumgrößenabhängigen Korrektursummanden gebildet. Bewertete Norm-Flankenpegeldifferenzen für Holz-, Leicht- und Trockenbauteile werden in Akustikprüfständen gemessen und können für eine Vielzahl von Bauteilen den Knauf-Unterlagen entnommen

$$R_{\text{Ff,w}} = D_{\text{n,f,w}} + 10\log\left(\frac{I_{\text{lab}}}{I_{\text{f}}}\right) + 10\log\left(\frac{S_{\text{S}}}{A_{\text{0}}}\right) \tag{1}$$

Bezugskantenlänge I_{lab}

Für Fassaden und Innenwände bei horizontaler Schallübertragung

Für Decken, Unterdecken und Fußböden bei horizontaler Übertragung sowie bei Fassaden und Innenwände bei vertikaler Übertragung 4,5 m

Gemeinsame Kopplungslänge des trennenden und flankierenden Bauteils der entsprechenden Bausituation in m

Fläche des trennenden Bauteils in m²

Bezugsabsorptionsfläche 10 m²

Durch eine energetische Summation werden die einzelnen Schallübertragungswege zum Schalldämm-Maß im eingebauten Zustand zusammenge-

$$R'_{w} = -10\log \left[10^{-R_{Dd,w}/10} + \sum_{F=f=1}^{n} 10^{-R_{Ff,w}/10} \right]$$
 (2)

Sollte das Trennbauteil (Trennwand oder Decke) kleiner 10 m² sein, muss das bewertete Luftschalldämm-Maß R', in eine bewertete Norm-Schallpegeldifferenz D_{n,w} umgerechnet werden.

$$D_{n,w} = R'_{w} - 10log\left(\frac{S_{s}}{10 \text{ m}^{2}}\right) dB$$
 (3)

 R'_{w} und $D_{n,w}$ sind auf eine Nachkommastelle genau anzugeben.

 R'_{w} und $D_{n,w}$ sind unter Berücksichtigung einer Prognoseunsicherheit von 2 dB mit den gestellten Anforderungen (erf. R'w) zu vergleichen. Liegt die Anforderung unter dem prognostizierten Wert, ist die Anforderung erfüllt und der Nachweis nach DIN 4109-2:2018 geführt.

Ist die Anforderung nicht erfüllt, ist der Schallübertragungsweg mit dem geringsten Schalldämm-Maß bzw. dem geringsten Flankenschalldämm-Maß zu optimieren.

Nachweis:

$$R'_{w}$$
 - 2 dB \geq erf. R'_{w} bzw. $D_{n,w}$ - 2 dB \geq erf. R'_{w} (4)

Schalldämm-Maße im eingebauten Zustand

Gem. DIN 4109

Wohnungstrennwand im mehrgeschossigen Wohnungsbau in Leichtbauweise

•	Anforderung nach	DIN 4109-1:2018	$R'_{w} \ge 53 \text{ dB}$

■ Trennwandlänge
$$L = 6,50 \text{ m}$$
■ Trennwandhöhe $H = 2,60 \text{ m}$

Trennwand

 W555.de Holztafelbau-Innenwand – tragend, raumabschließend Beplankung Wandseite 1: 12,5 mm Diamant + 12,5 mm Silentboard Beplankung Wandseite 2: 12,5 mm Diamant + Federschiene + 12,5 mm Silentboard Bewertetes Schalldämm-Maß R_w = 64,1 dB

Außenwand

Holzständerwand mit Installationsebene.
 Installationsebene durch Trennwand unterbrochen.
 Norm-Flankenpegeldifferenz nach Tab. FB. 6
 D_{n.f.w.} = 68 dB

Flurwand

Holzständerwand mit Installationsebene.
 Installationsebene durch Trennwand unterbrochen.
 Norm-Flankenpegeldifferenz nach Tab. FB. 6
 D_{n,f,w} = 68 dB

Boden

Schwimmend verlegter Estrich
 Trennwand durchlaufend bis auf Rohdecke / Holzbalkendecke
 Norm-Flankenpegeldifferenz nach Tab. FB. 15
 D_{n,f,w} = 67 dB

Decke

Holzbalkendecke mit Unterdecke
 Unterdecke durch Trennwand unterbrochen
 Norm-Flankenpegeldifferenz nach Tab. FB. 14
 D_{n.f.w} = 67 dB

1. Berechnung der bewerteten Flankenschalldämm-Maße

■ Flankenschalldämm-Maß Außenwand

 $R_{Ff,w,Außenwand}$ = 68 dB + 10log (2,80 m / 2,60 m) + 10log (16,9 m² / 10 m²) $R_{Ff,w,Außenwand}$ = 70,6 dB

■ Flankenschalldämm-Maß Flurwand

 $R_{\rm Ff,w,Flurwand}$ = 68 dB + 10log (2,80 m / 2,60 m) + 10log (16,9 m² / 10 m²) $R_{\rm Ff,w,Flurwand}$ = 70,6 dB

■ Flankenschalldämm-Maß Boden

 $R_{\rm Ff,w,Boden}$ = 67 dB + 10log (4,50 m / 6,50 m) + 10log (16,9 m² / 10 m²) $R_{\rm Ff,w,Boden}$ = 67,7 dB

■ Flankenschalldämm-Maß Decke

 $R_{Ff,w,Decke} = 67 dB + 10log (4,50 m / 6,50 m) + 10log (16,9 m² / 10 m²)$ $R_{Ff,w,Decke} = 67,7 dB$

Berechnung des bewerteten Schalldämm-Maßes im eingebauten Zustand

$$R_{w}^{'} = -10log \left[10^{\frac{-64,1}{10}} + 10^{\frac{-70,6}{10}} + 10^{\frac{-70,6}{10}} + 10^{\frac{-70,6}{10}} + 10^{\frac{-67,7}{10}} + 10^{\frac{-67,7}{10}} + 10^{\frac{-67,7}{10}} \right]$$

 $R'_{w} = 60,4 dB$

3. Nachweisführung

Mindestanforderung nach DIN 4109-1:2018

(4) R'_w - 2 dB \geq erf. R'_w

60,4 dB - 2 dB ≥ 53 dB erfüllt

Erhöhte Anforderung nach Beiblatt 2 zur DIN 4109:1989

(4) R'_w - 2 dB \geq erf. R'_w

60,4 dB - 2 dB ≥ 55 dB erfüllt

Schalldämm-Maß im eingebauten Zustand

Knauf Verfahren Mischbauweisen und Holz,- Leicht,- und Trockenbau

Knauf-Tabellen- und Dreiecksverfahren

Alternativ zum Norm-Verfahren kann das Knauf-Tabellen- und Dreiecksverfahren angewandt werden. Im reinen Holz-, Leicht- und Trockenbau entspricht dieses Verfahren der normativen Herangehensweise. Bei Mischkonstruktionen kann das Verfahren zur Abschätzung des zu erreichenden Schalldämm-Maßes im eingebauten Zustand angewandt werden. Es ist jedoch zu beachten, dass diese Herangehensweise lediglich 5 Schallübertragungswege (analog dem Vorgehen im Holz-, Leicht- und Trockenbau) berücksichtigt. Im reinen Massivbau sind 13 Schallübertragungswege zu beachten. Die zu betrachtenden Schallübertragungswege bei Mischbauweisen sind abhängig von der Ausbildung des Trennbauteils und der flankierenden Bauteile. Dieses Verfahren berücksichtigt keine Stoßstellendämm-Maße, wie es bei Verbindungen von zwei massiven Bauteilen nach Norm vorgesehen ist. Daher dient dieses Verfahren bei Mischbauweisen lediglich einer ersten Einschätzung.

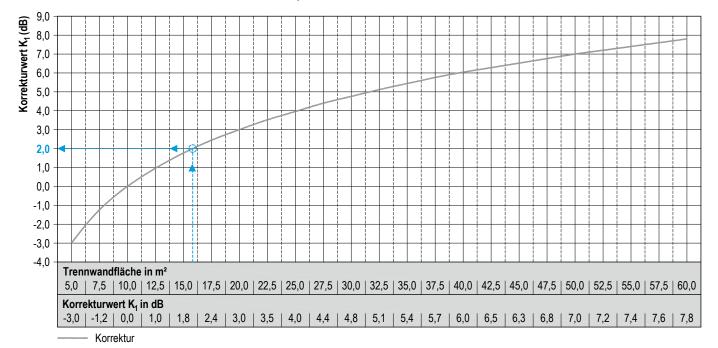
Vorgehen:

Zur Umrechnung der Norm-Flankenpegeldifferenzen D_{n,f,w} in die maßgeblichen Flankenschalldämm-Maße R_{Ff,w} sind raumgrößenabhängige Korrekturterme zu ermitteln. Je nach Schallübertragungsrichtung (vertikal oder horizontal) setzen sich diese wie folgt zusammen:

Horizontale Schallübertragung

Hierbei ist die Norm-Flankenpegeldifferenz in der Regel für zwei Wände, dem Boden und der Decke zu bestimmen.

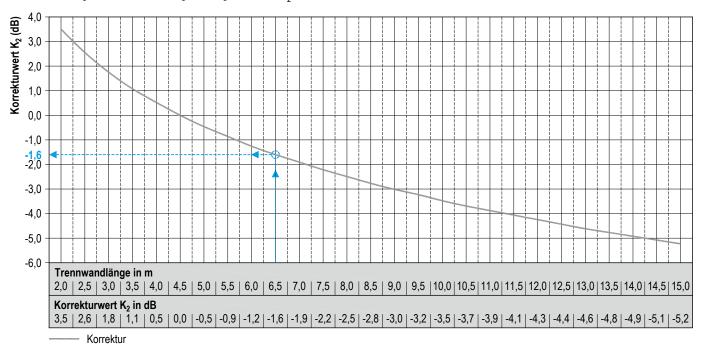
- Für alle vier Übertragungswege ist eine Flächenkorrektur K₁ zur Berücksichtigung der Abmessung der Trennwand anzusetzen.
- Bei den Schallübertragungen über Boden und Decke ist zur Berücksichtigung der Kopplungslänge eine Längenkorrektur K₂ (Verbindungslänge zwischen Boden und Trennwand sowie Decke und Trennwand) anzuwenden.
- Zur Berücksichtigung der Kopplungslänge zwischen der Trennwand und der Innenwand sowie der Trennwand und der Außenwand ist zusätzlich eine Höhenkorrektur K₃ (Raumhöhenkorrektur) vorzusehen.


Vertikale Schallübertragung

Bei diesen Übertragungswegen bildet in aller Regel der Boden bzw. die Decke das trennende Bauteil und 4 Wände bilden die flankierenden Bauteile. Somit ist neben der Flächenkorrektur K₁ nur noch vier Mal die Längenkorrektur K₂ zur Berücksichtigung der Kopplungslängen zwischen dem trennenden Bauteil und den Wänden vorzusehen.

Die Norm-Flankenpegeldifferenzen können aus den Kapitel Flankierende Bauteile ab Seite 34 entnommen werden.

Bestimmung der Flächenkorrektur K₁


Abb. BL. 2: Diagramm zur Bestimmung der Flächenkorrektur K₁

Knauf Verfahren Mischbauweisen und Holz,- Leicht,- und Trockenbau

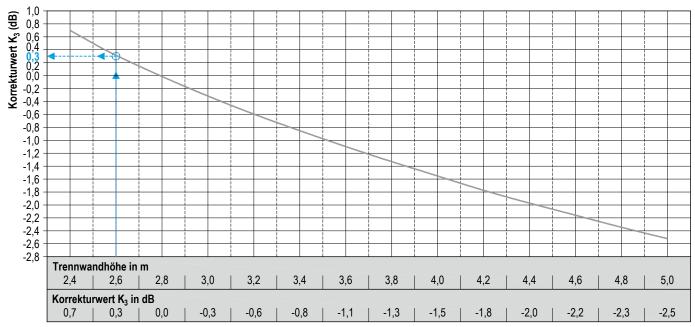

Bestimmung der Längenkorrektur K₂

Abb. BL. 3: Diagramm zur Bestimmung der Längenkorrektur K₂

Bestimmung der Höhenkorrektur K₃

Abb. BL. 4: Diagramm zur Bestimmung der Höhenkorrektur K₃

---- Korrektur

Schalldämm-Maß im eingebauten Zustand

Knauf Verfahren Mischbauweisen und Holz,- Leicht,- und Trockenbau

Rechenbeispiel:

Wohnungstrennwand im mehrgeschossigen Wohnungsbau

■ Mindestanforderung nach DIN 4109-1:2018	$R'_{w} \ge 53 \text{ dB}$
■ Erhöhte Anforderung nach Bbl. 2 zur DIN 4109:1989	R′ _w ≥ 55 dB
■ Trennwandlänge	L = 6,50 m
■ Trennwandhöhe	H = 2,60 m
■ Trennwandfläche	$S = 16.9 \text{ m}^2$

Korrekturfaktoren

$K_1 = 2.0 \text{ dB}$
$K_2 = -1.6 \text{ dB}$
$\bar{K_3} = 0.3 \text{ dB}$

Abb. BL. 5: Raumgrößenabhängige Korrekturterme

Norm-Flankenpegeldifferenzen

(Kapitel Flankierende Bauteile ab Seite 34)

- Fließestrich durch Trennwand konstruktiv getrennt.
 Estrichdicke ≥ 60 mm Trittschalldämmung s´ ≤ 10 MN/m³ D_{n.f.w} = 73 dB
- Massivdecke 0,20 m dick flächenbezogene Masse m´ = 460 kg/m² $D_{n fw} \approx 63 dB$
- Innenwand,
 W112.de Metallständerwand Einfachständerwerk
- CW 100, 2x 12,5 mm Diamant an der Stoßstelle geschlitzt $D_{n,f,w} = 73 \text{ dB}$ Außenwand massiv flächenbezogene Masse m´ = 400 kg/m² $D_{n,f,w} = 64 \text{ dB}$

1. Berechnung der bewerteten Flankenschalldämm-Maße

■ Flankenschalldämm-Maß Boden

$$R_{Ff,w,Boden} = D_{n,f,w,Boden} + K_1 + K_2 = 73 dB + 2,0 dB + (-1,6 dB)$$

 $R_{Ff,w,Boden} = 73,4 dB$

■ Flankenschalldämm-Maß Decke

$$R_{\text{Ff,w,Decke}} = D_{\text{n,f,w,Decke}} + K_1 + K_2 = 63 \text{ dB} + 2.0 \text{ dB} + (-1.6 \text{ dB})$$

 $R_{\text{Ff,w,Decke}} = 63.4 \text{ dB}$

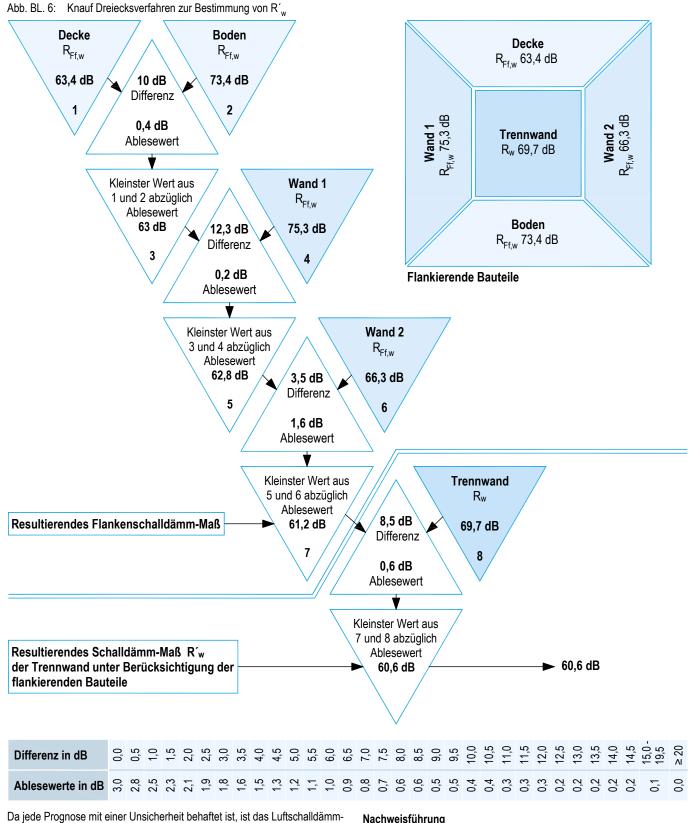
■ Flankenschalldämm-Maß Innenwand

$$\begin{array}{l} R_{\rm Ff,w,Innenwand} = D_{\rm n,f,w,Innenwand} + K_1 + K_3 = 73~{\rm dB} + 2,0~{\rm dB} + 0,3~{\rm dB} \\ R_{\rm Ff,w,Innenwand} = 75,3~{\rm dB} \end{array}$$

■ Flankenschalldämm-Maß Außenwand

$$\begin{array}{l} R_{\rm Ff,w,Außenwand} = D_{\rm n,f,w,Außenwand} + K_1 + K_2 = 64~\rm dB + 2,0~\rm dB + 0,3~\rm dB \\ R_{\rm Ff,w,Außenwand} = 66,3~\rm dB \end{array}$$

2. Berechnung des bewerteten Schalldämm-Maßes im eingebauten Zustand


Um die Luftschalldämmung im eingebauten Zustand zu berechnen, muss zunächst das Schalldämm-Maß der Trennwand ermittelt werden.

Z. B. W115.de Metallständerwand – Doppelständerwerk CW 50,
$$2x$$
 12,5 mm Diamant R_w = 69,7 dB

Im nächsten Schritt müssen die Flankenschalldämm-Maße und das Schalldämm-Maß der Trennwand in einer energetischen Summation zusammengerechnet werden (siehe Seite 13).

Knauf Verfahren Mischbauweisen und Holz,- Leicht,- und Trockenbau

Maß R', zum Vergleich mit der gestellten Anforderung mit einer Prognoseunsicherheit zu korrigieren.

Pauschal belaufen sich die Prognoseunsicherheiten im Luftschall nach DIN 4109-2:2018 auf:

■ Prognoseunsicherheit bei Wänden und Decken

 $u_{prog} = 2 dB$

Nachweisführung

Mindestanforderung nach DIN 4109-1:2018

(4) R'_w - 2 dB \geq erf. R'_w

60,6 dB - 2 dB ≥ 53 dB erfüllt

Erhöhte Anforderung nach Beiblatt 2 zur DIN 4109:1989

(4) R'_w - 2 dB \geq erf. R'_w

60,6 dB - 2 dB ≥ 55 dB erfüllt

Berechnung der Trittschalldämmung

Norm-Trittschallpegel von Decken im Massivbau

Bestimmung des Norm-Trittschallpegels im eingebauten Zustand im Massivbau

Bei Anwendung des Norm-Verfahrens kann der bewertete Norm-Trittschallpegel L $_{n,w}$ unter Berücksichtigung der flankierenden Bauteile aus der Rohdecke mit dem äquivalenten bewerteten Norm-Trittschallpegel L $_{\rm n,eq,0,w}$ und der bewerteten Trittschallminderung $\Delta L_{\rm w}$ von Deckenauflagen bestimmt werden. Der Einfluss flankierender, massiver Bauteile wird durch einen Korrekturterm K in Abhängigkeit der mittleren flächenbezogenen Masse der Flankenbauteile und der flächenbezogenen Masse der Massivdecke berücksichtig.

Der Zusammenhang dieser Größen drückt sich durch folgende Formel aus:

$$L'_{n,w} = L_{n,eq,0,w} - \Delta L_w + K$$
 (5)

Der äquivalente, bewertete Norm-Trittschallpegel der Rohdecke kann aus der flächenbezogenen Masse bestimmt werden. Als flächenbezogene Masse der Massivdecke ist die Masse der Decke zuzüglich eines ggf. vorhandenen Verbundestrichs oder Estrichs auf Trennlage sowie eines ggf. vorhandenen Putzes anzusetzen. Die flächenbezogene Masse eines schwimmenden Estrichs darf nicht angesetzt werden. Dieser Einfluss wird über die bewertete Trittschallminderung ΔL_{w} berücksichtigt.

$$L_{n,eq,0,w} = 164 - 35lg \left(\frac{m'}{1kg/m^2}\right)$$
 (6)

Der Korrekturterm K ist davon abhängig, ob die Massivdecke mit oder ohne Unterdecke ausgeführt wird.

Für Massivdecken **ohne Unterdecke** und unter der Voraussetzung, dass die Massivdecke schwerer oder gleichschwer wie die mittlere flächenbezogene Masse der flankierenden Wände ist, ergibt sich der Korrekturterm zu:

$$K = 0.6 + 5.5 lg \left(\frac{m'_s}{m'_{f,m}} \right)$$
 (7)

Mit:

m'_s = Flächenbezogene Masse der Massivdecke in kg/m²

m´_{f,m} = Mittlere flächenbezogene Masse der massiven, flankierenden Bauteile in kg/m²

Für den Fall, dass die mittlere flächenbezogene Masse der massiven, flankierenden Bauteile höher ist als die flächenbezogene Masse der Massivdecke gilt:

$$K = 0 \tag{8}$$

Für Massivdecken mit Unterdecke ergibt sich der Korrekturwert K zu:

$$K = -5.3 + 10.2 lg \left(\frac{m'_s}{m'_{fm}} \right)$$
 (9)

Sollten die betrachteten Räume versetzt zueinander angeordnet sein, wird der Korrekturwert K durch einen Korrekturwert zur Berücksichtigung der Raumanordnung K_{τ} ersetzt. Daraus ergibt sich folgender Zusammenhang:

$$L'_{n,w} = L_{n,eq,0,w} - \Delta L_w - K_T$$
 (10)

Tab. BT. 1: Korrekturwert K_T zur Ermittlung des bewerteten Norm-Trittschallpegels L'_{n,w} für unterschiedliche räumliche Zuordnungen von mit Norm-Hammerwerk angeregter Decke und Empfangsraum (ER) gem. DIN 4109-2:2018-01 Tab. 2

Lage der Empfangsrät	K _T	Zeile	
Neben oder schräg unter der angeregten Decke	ER DER DER DER DER DER DER DER DER DER D	+51)	1
Wie Zeile 1, jedoch ein Raum dazwi- schenliegend	ER O ER	+10 ¹⁾	2
Über der angeregten Decke (Gebäude mit tragenden Wänden)	ER O	+10 ²⁾	3
Über der angeregten Decke (Skelettbau)		+20	4
Über Haustrennwand mit zwei biegesteifen Schalen und Trenn- fuge	ER O O ER	+15	5

- Voraussetzung: Zur Sicherstellung einer ausreichenden Stoßstellendämmung müssen die Wände zwischen angeregter Decke und Empfangsraum starr angebunden sein und eine flächenbezogene Masse m' ≥ 150 kg/m² haben.
- 2) Dieser Korrekturwert gilt sinngemäß auch für Bodenplatten. Norm-Hammerwerk nach DIN EN ISO 10140-05.2014-09, Anhang E

Bei der Ermittlung der Verbesserung durch Deckenauflagen $\Delta L_{\rm w}$ wird zwischen schwimmenden Zement, Calciumsulfat-, Calciumsulfatfließ-, Magnesia- und Kunstharzestrich mit einer flächenbezogenen Masse von $60~{\rm kg/m^2} \le {\rm m'} \le 160~{\rm kg/m^2}$ auf einer Trittschalldämmung mit einer dynamischen Steifigkeit von $6~{\rm MN/m^3} \le {\rm s'} \le 50~{\rm MN/m^3}$ und schwimmenden Gussasphalt- und Fertigteilestrich auf einer Trittschalldämmung unterschieden.

Für schwimmend verlegte Zement, Calciumsulfat-, Calciumsulfatfließ-, Magnesia- und Kunstharzestrich gilt:

$$\Delta L_w = 13 \text{ lg} \left(\frac{\text{m}'}{\text{kg/m}^2} \right) - 14.2 \text{ lg} \left(\frac{\text{s}'}{\text{MN/m}^3} \right) + 20.8$$
 (11)

Mit:

m′ = Flächenbezogene Masse des schwimmenden Estrichs in kg/m²

s' = Dynamische Steifigkeit der Trittschalldämmung in MN/m³

Die Grenze der flächenbezogenen Masse zur Berechnung des Verbesserungsmaßes durch Fertigteilestrichen beläuft sich auf $15 \text{ kg/m}^2 \le \text{m}' \le 40 \text{ kg/m}^2$ und einer Trittschalldämmung mit einer dynamischen Steifigkeit von $15 \text{ MN/m}^3 \le \text{s}' \le 40 \text{ MN/m}^3$.

Beim Gussasphaltestrich beläuft sich die Grenze der flächenbezogenen Masse auf 58 kg/m² \leq m′ \leq 87 kg/m² und einer dynamischen Steifigkeit der Trittschalldämmung von 15 MN/m³ \leq s′ \leq 50 MN/m³.

Die Verbesserung durch schwimmend verlegte Fertigteil- und Gussasphaltestriche ergibt sich zu:

$$\Delta L_{w} = \left(-0.21 \ \frac{m^{'}}{kg/m^{2}} - 5.45\right) \ lg \ \frac{s^{'}}{MN/m^{3}} + 0.46 \ \frac{m^{'}}{kg/m^{2}} + 23.8 \eqno(12)$$

Mit:

m' = Flächenbezogene Masse des Fertigteil- bzw. Gussasphaltestrichs in kg/m²

s' = Dynamische Steifigkeit der Trittschalldämmung in MN/m³

Bei Anwendung von zwei übereinander liegenden Trittschalldämmungen reduziert sich die dynamische Steifigkeit. Die aus beiden Trittschalldämmungen resultierende dynamische Steifigkeit s´_{tot} kann wie folgt berechnet werden.

$$\mathbf{s'}_{tot} = \left(\frac{1}{\frac{1}{\mathbf{s'}_1} + \frac{1}{\mathbf{s'}_2}}\right) \tag{13}$$

Mit

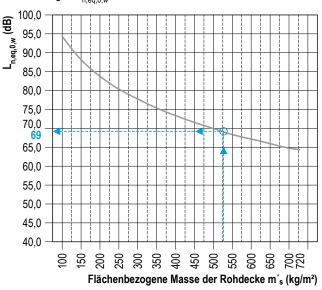
s'₁ = Dynamische Steifigkeit der ersten Trittschalldämmung in MN/m³

s'₂ = Dynamische Steifigkeit der zweiten Trittschalldämmung in MN/m³

Alternativ zu den berechneten Verbesserungsmaßen können gemessene Verbesserungsmaße angesetzt werden.

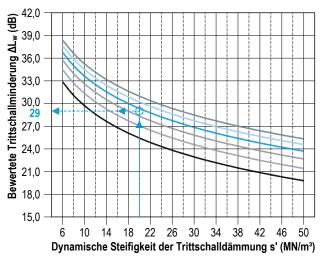
Die Möglichkeit zur Berechnung der Verbesserung im Trittschallschutz durch Unterdecken bietet dieses Norm-Verfahren noch nicht.

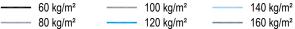
In solchen Fällen bietet sich die Verwendung von gemessenen Systemen an.


Gem. DIN 4109

Tabellen- und Diagrammverfahren

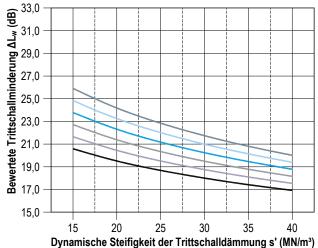
Bestimmung des äquivalenten bewerteten Norm-Trittschallpegels $L_{n,eq,0,w}$ der Rohdecke


Abb. BT. 1: Bestimmung des äquivalenten bewerteten Norm-Trittschallpegels L_{n,eq,0,w} der Rohdecke


Bestimmung der bewerteten Trittschallminderung ΔL_{w} durch schwimmende Estriche

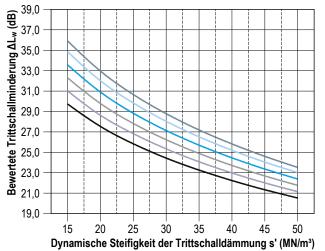
2.1. Schwimmender Mörtelestrich (Zement, Calciumsulfat-, Calciumsulfatfließ-, Magnesia- und Kunstharzestrich)

Bestimmung der bewerteten Trittschallminderung durch schwimmende Mörtelestriche



2.2. Fertigteilestriche z. B. Brio, Gipsfaser

Bestimmung der bewerteten Trittschallminderung durch Fertigteilestriche


Flächenbezogene Masse Fertigteilestrich m'

15 kg/m²	 25 kg/m²	35 kg/m ²
 20 kg/m ²	30 kg/m ²	40 kg/m ²

Alternativ können Messwerte aus Systemprüfungen übernommen

2.3. Gussasphaltestrich

Abb. BT. 4: Bestimmung der bewerteten Trittschallminderung durch Gussasphaltestrich

Flächenbezogene Masse Gussasphaltestrich m'

—— 58 kg/m²	70 kg/m²	82 kg/m²
64 kg/m²	76 kg/m²	87 kg/m²

3. Bestimmung der Korrekturwerte K zur Berücksichtigung der Flankenübertragung

Tab. BT. 2: Bestimmung der Korrekturwerte K zur Berücksichtigung der Flankenübertragung mit/ohne Unterdecke gem. DIN 4109-2:2018-01

Mittlere flächenbezogene	tlere flächenbezogene Flächenbezogene Masse der Rohdecke ohne Estrich m´s (in kg/m²)										Zeile			
Masse der Flanken m´ _{f,m}	100	200	250	300	350	400	450	500	550	600	700	800	900	
3.1. Decke ohne Unterdecke														
100 kg/m²	0,6 dB	2,3 dB	2,8 dB	3,2 dB	3,6 dB	3,9 dB	4,2 dB	4,4 dB	4,7 dB	4,9 dB	5,2 dB	5,6 dB	5,8 dB	1
150 kg/m²	0,0 dB	1,3 dB	1,8 dB	2,3 dB	2,6 dB	2,9 dB	3,2 dB	3,5 dB	3,7 dB	3,9 dB	4,3 dB	4,6 dB	4,9 dB	2
200 kg/m²	0,0 dB	0,6 dB	1,1 dB	1,6 dB	1,9 dB	2,3 dB	2,5 dB	2,8 dB	3,0 dB	3,2 dB	3,6 dB	3,9 dB	4,2 dB	3
250 kg/m²	0,0 dB	0,1 dB	0,6 dB	1,0 dB	1,4 dB	1,7 dB	2,0 dB	2,3 dB	2,5 dB	2,7 dB	3,1 dB	3,4 dB	3,7 dB	4
300 kg/m²	0,0 dB	0,0 dB	0,2 dB	0,6 dB	1,0 dB	1,3 dB	1,6 dB	1,8 dB	2,0 dB	2,3 dB	2,6 dB	2,9 dB	3,2 dB	5
350 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,2 dB	0,6 dB	0,9 dB	1,2 dB	1,5 dB	1,7 dB	1,9 dB	2,3 dB	2,6 dB	2,9 dB	6
400 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,3 dB	0,6 dB	0,9 dB	1,1 dB	1,4 dB	1,6 dB	1,9 dB	2,3 dB	2,5 dB	7
450 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,3 dB	0,6 dB	0,9 dB	1,1 dB	1,3 dB	1,7 dB	2,0 dB	2,3 dB	8
600 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,1 dB	0,3 dB	0,6 dB	0,8 dB	1,0 dB	1,4 dB	1,7 dB	2,0 dB	9
3.2. Decke mit Unterdecke														
100 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,2 dB	0,8 dB	1,4 dB	1,8 dB	2,3 dB	2,6 dB	3,3 dB	3,9 dB	4,4 dB	10
150 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,5 dB	0,8 dB	1,5 dB	2,1 dB	2,6 dB	11
200 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,2 dB	0,8 dB	1,4 dB	12
250 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,4 dB	13
300 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	14
350 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	15
400 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	16
450 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	17
600 kg/m²	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	0,0 dB	18

4. Bestimmung der bewerteten Norm-Trittschallpegels im eingebauten Zustand

$$L'_{n,w} = L_{n,eq,0,w} - \Delta L_w + K$$
 (14)

5. Nachweisführung

Die Anforderungen sind erfüllt wenn folgende Bedingung erfüllt ist:

$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$
 (15)

Mit:

zul. $L'_{n,w}$ = Anforderung an die Deckenkonstruktion im eingebauten Zustand u_{nrea} = Prognoseunsicherheit. Für Decken pauschal 3 dB

Rechenbeispiel Diagramm- und Tabellenverfahren Bauteilaufbauten

- 220 mm Stahlbetondecke, Rohdichte 2400 kg/m³, flächenbezogene Masse m′ = 0,22 m· 2400 kg/m³ = 528 kg/m²
- 55 mm Knauf Fließestrich FE mit einer flächenbezogenen Masse von m' ≈ 110 kg/m² auf Trittschalldämm-Platte TPE 40-2 mit einer dynamischen Steifigkeit s' ≤ 20 MN/m³
- Rohdecke mit Unterdecke
- Wände umlaufend in Massivbauweise
 - Zwei Außenwände mit 240 mm KS-Mauerwerk, Rohdichte 1800 kg/m³, 10 mm Innenputz flächenbezogene Masse m′ = 0.24 m·1800 kg/m³ + 10 kg/m² Putz = 442 kg/m²
 - Zwei Innenwände mit 175 mm Ziegelmauerwerk, Rohdichte 1400 kg/m³, beidseitig 10 mm Innenputz, flächenbezogene Masse m′ = 0,175 m·1400 kg/m³ + 20 kg/m² Putz = 265 kg/m²
 - Mittlere Flächenbezogene Masse der Wände m'_{mittel} = (2 · 442 kg/m² + 2 · 265) / 4 = 353,5 kg/m²

1. Ermittlung des äquivalenten bewerteten Norm-Trittschallpegels $L_{\rm n,eq,0,w}$ nach Abb. BT. 1

 $L_{\text{n.eq.0.w}} \approx 69 \text{ dB}$

 Bestimmung der bewerteten Trittschallminderung durch schwimmende Mörtelestriche

nach Abb. BT. 2

 $\Delta L_{\rm w} \approx 29 \text{ dB}$

 Korrekturwert K zur Berücksichtigung der Flankenübertragung nach Tab. BT. 2

K = 0 dB

4. **(14)** $L'_{n,w} = L_{n,eq,0,w} - \Delta L_w + K$ $L'_{n,w} = 69 \text{ dB} - 29 \text{ dB} + 0 \text{ dB} = 40 \text{ dB}$

Nachweisführung

Anforderungen an Decken im eingebauten Zustand

- Mindestanforderung nach DIN 4109-1:2018 für Massivdecken zul. L'nw ≤ 50 dB
- Erhöhte Anforderungen nach Beiblatt 2 zur DIN 4109:1989 zul. L′_{n,w} = 46 dB

Gegenüberstellung mit der Mindestanforderung

(15)
$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$

40 dB + 3 dB ≤ 50 dB erfüllt

Gegenüberstellung mit den erhöhten Anforderungen

(15)
$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$

 $40 \text{ dB} + 3 \text{ dB} \leq 46 \text{ dB}$ erfüllt

Norm-Trittschallpegel von Decken im Holzbau

Bestimmung des Norm-Trittschallpegels im eingebauten Zustand für den reinen Holzbau

Bei der Trittschallübertragung im Holzbau müssen nach DIN 4109-2:2018 3 Schallübertragungswege berücksichtigt werden.

- Direkte Schallübertragung über die Trenndecke (Schallübertragungsweg Dd). Die kennzeichnende Größe ist der Norm-Trittschallpegel L_{n,w} der Decke. Werte hierfür können aus der Broschüre Decken SS05.de entnommen werden.
- Flankierende Trittschallübertragung über die tragende Deckenkonstruktion und der darunterliegenden Wand (Schallübertragungsweg Df)
 Die kennzeichnende Größe ist der Korrekturterm K₁.
- Flankierende Trittschallübertragung über den Estrich-Randverbund und der darunterliegenden Wand (Schallübertragungsweg DFf)
 Die kennzeichnende Größe ist der Korrekturterm K₂.

Abb. BT. 5: Direkter Schalldurchgang durch die Decke

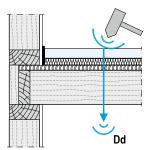


Abb. BT. 6: Flankierende Schallübertragung über die tragende Deckenkonstruktion

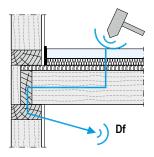
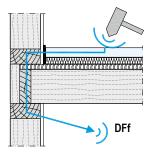



Abb. BT. 7: Flankierende Schallübertragung über den Estrich-Randverbund

Bei Anwendung dieses Verfahrens zur Ermittlung des Norm-Trittschallpegels L $_{\rm n,w}'$ unter Berücksichtigung der Flankenübertragung ist anzumerken, dass Entkopplungsmaßnahmen wie beispielsweise Vorsatzschalen an den Wänden oder Elastomerlager unter den Schwellen auf den einzelnen Flankenübertragungswegen nicht berücksichtigt werden können. Das führt dazu, dass der Korrekturwert K $_1$ bei einer doppelten Beplankung der Unterdecke im Vergleich zu einer einfachen Beplankung aufgrund der dominanteren Schallübertragung über die flankierenden Wände wesentlich höhere Werte annimmt und der Mehrwert der Aufrüstung von Holzbalkendecken durch eine zweite Beplankungslage und Entkopplungsmaßnahmen auf den Flankenübertragungswegen nur mäßig ausfällt. Es ist geplant, diese Lücke durch weitere Forschungsarbeiten zu schließen.

Somit ist das bestehende Prognoseverfahren ein einfaches Werkzeug zur schnellen Abschätzung des zu erreichenden Norm-Trittschallpegels L´_{n,w}. Modifikationen zur Minderung der Schallübertragung über flankierenden Bauteile können jedoch noch nicht berücksichtigt werden. Das führt ggf. zu einer Überdimensionierung der Deckenkonstruktion wenn die Nachweisführung nach diesem Verfahren geführt werden soll.

Berechnung

$$L'_{n,w} = L_{n,w} + K_1 + K_2$$
 (16)

Mit

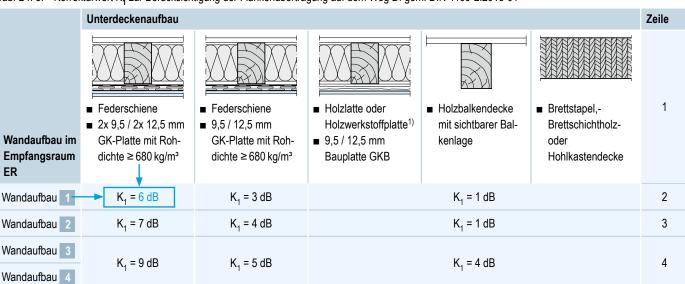
L'_{n,w} = Bewerteter Norm-Trittschallpegel im eingebauten Zustand unter Berücksichtigung der Flankenübertragung

L_{nw} = Bewerteter Norm-Trittschallpegel der Decke

K₁ = Korrekturwert zur Berücksichtigung der Schallübertragung über den Weg Df

K₂ = Korrekturwert zur Berücksichtigung der Schallübertragung über den Weg DFf

Nachweisführung


$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$
 (15)

Mit

zul. L'_{n.w} = Anforderung an die Deckenkonstruktion im eingebauten Zustand

u_{prog} = Prognoseunsicherheit. Für Decken pauschal 3 dB

Tab. BT. 3: Korrekturwert K₁ zur Berücksichtigung der Flankenübertragung auf dem Weg Df gem. DIN 4109-2:2018-01

1) 13 bis 22 mm Holzwerkstoffplatte, Rohdichte von $\rho \ge 650$ kg/m³, mechanisch verbunden

Tab. BT. 4: Korrekturwert K₂ zur Berücksichtigung der Flankenübertragung auf dem Weg DFf gem. DIN 4109-2:2018-01

Wandaufbau im Empfangsraum ER	Estrich- aufbau		Trittschallübertragung auf dem Weg Dd + DF L _{n,w} + K ₁ dB										$L_{n,DFf,w}$	Zeile											
		35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	> 55	dB	
Wandaufbau 1	Α	10	9	8	7	6	5	5	4	4	3	3	2	2	1	1	1	1	1	1	0	0	0	44	1
bzw.	В	6	5	5	4	4	3	3	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0	40	2
Wandaufbau 2	С	5	4	4	3	3	2	2	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	38	3
Wandaufbau 3	Α	11	10	10	9	8	7	6	5	5	4	4	3	3	2	2	1	1	1	1	1	1	0	46	4
bzw.	В	10	10	9	8	7	6	5	5	4	4	3	3	2	2	1	1	1	1	1	1	0	0	45	5
Wandaufbau 4	С	8	7	6	5	5	4	4	3	3	2	2	1	1	1	1	1	1	0	0	0	0	0	42	6

Tab. BT. 5: Legende Tab. BT. 3 und 4 gem. DIN 4109-2:2018-01

Leç	egende egende							
Wa	ndaufbau im E	mpfangsraum ER						
1		 13 bis 22 mm Holzwerkstoffplatte, Rohdichte von ρ ≥ 650 kg/m³, mechanisch verbunden 9,5 bis 12,5 mm GK-Platte mit Rohdichte ≥ 680 kg/m³ 	2	■ 12,5 bis 15 mm Gipsfaserplatte nach DIN EN 15283-2, Rohdichte von ρ ≥ 1100 kg/m³, mechanisch verbunden				
3		■ 13 bis 22 mm Holzwerkstoffplatte, Rohdichte von $\rho \ge 650$ kg/m³, mechanisch verbunden	4	■ Massivholzelemente oder 80 bis 100 mm Holzwerkstoffplatten m´ ≥ 50 g/m²				
Est	richaufbau							
Α	Mineralisch g	ebundener Estrich auf Holzweichfaser-Trittschalldämmplatt	ten, Randdämmstre	eifen: Mineralwolle- oder PE-Schaum-Randstreifen > 5 mm				
В	Gussasphaltestrich auf Holzweichfaser-Trittschalldämmplatten, Randdämmstreifen: Mineralwolle-Randstreifen > 5 mm oder Mineralisch gebundener Estrich auf Mineralwolle-, o. EPS-Trittschalldämmplatten Randdämmstreifen: Mineralwolle- o. PE-Schaum-Randstreifen > 5 mm							
С	Gussasphaltestrich auf Blähperlit/Mineralwolle, Randdämmstreifen: Mineralwolle-Randstreifen > 5 mm							

Norm-Trittschallpegel von Decken im Holzbau

Gem. DIN 4109

Nachweisführung

Anforderungen an Decken im eingebauten Zustand

■ Mindestanforderung nach DIN 4109-1:2018 für Holzbalkendecken L'_{n,w} ≤ 53 dB Anmerkung:

Die Mindestanforderung von 53 dB für Decken die dem Bauteilkatalog der DIN 4109-33:2016-07 zuzuordnen sind (Decken in Holz-, Leicht- und Trockenbauweise) gilt vermutlich nur noch bis zur nächsten Überarbeitung der DIN 4109, voraussichtlich bis 2021. Danach wird die Mindestanforderung den Anforderungen im Massivbau gleichgesetzt und beläuft sich dann auf $L'_{n,w} = 50$ dB.

■ Erhöhte Anforderungen nach Beiblatt 2 zur DIN 4109:1989 L'_{n,w} = 46 dB

Die Anforderungen sind erfüllt wenn folgende Bedingung erfüllt ist:

$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$
 (15)

Mit

zul. $L'_{n,w}$ = Anforderung an die Deckenkonstruktion im eingebauten Zustand u_{nrag} = Prognoseunsicherheit. Für Decken pauschal 3 dB

Rechenbeispiel

Bauteilaufbauten

- Holzbalkendecke
 - Fußbodenaufbau, 35 mm Knauf Fließestrich FE50 auf 15 mm Trittschalldämmplatte TP 15-5 mit Lastverteilplatte
 - Holzbalken 80 x 240 mm
 - Mineralwolle 120 mm im Deckenhohlraum
- Unterdecke, 2x 18 mm GKF auf Holzlatte mit Direktschwingabhänger Norm-Trittschallpegel der Decke $L_{n,w}$ = 40,6 dB
- Wände umlaufend in Holzständerbauweise mit 13 mm Holzwerkstoffplatte
 - + 12,5 mm Gipsplatte als innere Beplankung.
- 1. Ermittlung von K_1 über Tabellenverfahren nach Tab. BT. 3 $K_1 = 6 \text{ dB}$
- 2. Norm-Trittschallpegel der Decke + K₁ 40,6 dB + 6 dB = 46,6 dB
- 3. Wert auf ganze dB runden und in Tab. BT. 4 ablesen.

$$K_2 = 1 dB$$

4. **(16)**
$$L'_{n,w} = L_{n,w} + K_1 + K_2$$

 $L'_{n,w} = 40,6 \text{ dB} + 6 \text{ dB} + 1 \text{ dB} = 47,6 \text{ dB}$

Nachweisführung

Gegenüberstellung mit der Mindestanforderung

(15)
$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$

47,6 dB + 3 dB \le 53 dB erfüllt

Gegenüberstellung mit den erhöhten Anforderungen

(15)
$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$

47,6 dB + 3 dB \le 46 dB erfüllt

Nach Knauf Verfahren

Bestimmung des Norm-Trittschallpegels im eingebauten Zustand von Holzbalkendecken mit massiven flankierenden Wänden

Zur Ermittlung von Prognosewerten der Trittschalldämmung von Holzbalkendecken im Einbauzustand L´_{n,w} ist neben dem bewerteten Norm-Trittschallpegel der Decke ein Korrekturwert zur Berücksichtigung der Trittschallübertragung über flankierende, massive Wände zu berücksichtigen.

Der Korrektursummand K₁ ist dabei von zwei Faktoren abhängig:

- Bewerteter Norm-Trittschallpegel der Decke
- Mittlere, flächenbezogene Masse der Massivwände

Bei Bekleidung der flankierenden Wände mit biegeweichen Vorsatzschalen kann auf die Berücksichtigung des Korrektursummanden verzichtet werden.

Für das Knauf-Nachweisverfahren wird zur Erhöhung der Prognosesicherheit eine Prognoseunsicherheit von 4 dB empfohlen.

Somit ergibt sich folgender Zusammenhang:

$$L'_{n,w} = L_{n,w} + K_L$$
 (17)

Mit:

L´_{n,w} = Bewerteter Norm-Trittschallpegel im eingebauten Zustand unter Berücksichtigung der Flankenübertragung

L_{n w} = Bewerteter Norm-Trittschallpegel der Decke

K_L = Korrekturwert zur Berücksichtigung der Schallübertragung massive, flankierende Wände

Abb. BT. 8: Direkter Schalldurchgang durch die Decke

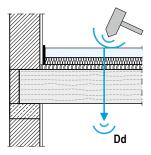
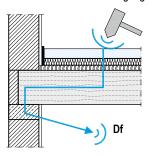



Abb. BT. 9: Schallübertragung über die flankierende, massive Wand

Tab. BT. 6: Flankenbedingte Korrekturwerte K₁

Vorhandener Norm- Trittschallpegel L _{n,w}	Korrektursummand K _L für flankierende Wände mit einer mittleren, flächenbezogenen Masse von $\geq 150 \text{ kg/m}^2 \mid \geq 500 \text{ kg/m}^2$					
≤ 55 dB	1 dB	1 dB	0 dB	1		
≤ 50 dB	2 dB	2 dB	0 dB	2		
≤ 45 dB	5 dB	2 dB	1 dB	3		
≤40 dB	7 dB	3 dB	2 dB	4		
≤ 35 dB	10 dB	5 dB	2 dB	5		

Nachweisführung

Anforderungen an Decken im eingebauten Zustand

■ Mindestanforderung nach DIN 4109-1:2018 für Holzbalkendecken L'_{n,w} ≤ 53 dB Anmerkung:

Die Mindestanforderung von 53 dB für Decken die dem Bauteilkatalog der DIN 4109-33:2016-07 zuzuordnen sind (Decken in Holz-, Leicht- und Trockenbauweise) gilt vermutlich nur noch bis zur nächsten Überarbeitung der DIN 4109, voraussichtlich bis 2021. Danach wird die Mindestanforderung den Anforderungen im Massivbau gleichgesetzt und beläuft sich dann auf L $'_{\rm n,w}$ = 50 dB

■ Erhöhte Anforderungen nach Beiblatt 2 zur DIN 4109:1989 L′_{n.w} = 46 dB

Die Anforderungen sind erfüllt wenn folgende Bedingung erfüllt ist:

$$L'_{n,w} + u_{prog} \le zul. L'_{n,w}$$
 (15)

Mi

zul. $L'_{n,w}$ = Anforderung an die Deckenkonstruktion im eingebauten Zustand u_{prog} = Prognoseunsicherheit.

Für dieses Knauf-Nachweisverfahren pauschal 4 dB

Rechenbeispiel

Bauteilaufbauten

- Holzbalkendecke
 - Fußbodenaufbau, Fertigteilestrich Brio 18 WF
 - Unterdecke, Freitragend D131.de mit 2x 12,5 mm Diamant mit 60 mm Mineralwollauflage

Norm-Trittschallpegel der Decke

 $L_{n w} = 38 \text{ dB}$

■ Wände umlaufend in Massivbauweise Mittlere flächenbezogene Masse m´ = 300 kg/m²

1. Norm-Trittschallpegel der Decke

 $L_{n w} = 38 \text{ dB}$

2. Korrektursummand K_L für $L_{n,w}$ = 38 dB und m' $_{Massivwande}$ = 300 kg/m² K_L = 3 dB (nach Tab. BT. 6)

3. **(17)** $L'_{n,w} = L_{n,w} + K_L$ $L'_{n,w} = 38 \text{ dB} + 3 \text{ dB} = 41 \text{ dB}$

Nachweisführung

Gegenüberstellung mit der Mindestanforderung

(15) $L'_{n,w} + u_{prog} \le zul. L'_{n,w}$ 41 dB + 4 dB \le 53 dB erfüllt

Gegenüberstellung mit den erhöhten Anforderungen

(15) $L'_{n,w} + u_{prog} \le zul. L'_{n,w}$ 45 dB \le 46 dB erfüllt

Schalldämm-Maß von Massivwänden und -decken

Berechnungsverfahren

Das Schalldämm-Maß massiver, einschaliger Bauteile ist im Wesentlichen vom Gewicht abhängig. Je schwerer das Bauteil, desto höher ist das Schall-

Zur Berechnung des Schalldämm-Maßes ist es notwendig, die flächenbezogene Masse m' (entspricht dem Gewicht einer Fläche von 1 m²) zu ermitteln. Die flächenbezogene Masse homogener, plattenförmiger Bauteile ohne Mauermörtel wird bestimmt über die Dicke des Bauteils d und der Rohdichte p.

$$m' = d \cdot \rho \tag{18}$$

Mit:

Flächenbezogene Masse in kg/m² m

d Dicke des massiven einschaligen Bauteils in m

Rohdichte in kg/m³

Für Mauerwerkswände mit Mörtelfugen wird die Rohdichte zur Berechnung der flächenbezogenen Masse in Abhängigkeit der Mörtelart bestimmt.

Ermittlung der Bauteilrohdichte

Tab. EL. 1: Bauteilrohdichte in Abhängigkeit der Mörtelart und Rohdichteklasse (RDK)

,		
Mauerwerk mit Normalmörte	el e e e e e e e e e e e e e e e e e e	Zeile
$\rho_{w} = 900 \cdot RDK + 100$	$(0,35 \le RDK \le 2,2)$	1
Mauerwerk mit Leichtmörtel		
$\rho_{w} = 900 \cdot RDK + 50$	$(0,35 \le RDK \le 1,0)$	2
Mauerwerk mit Dünnbettmör	rtel	
$\rho_{w} = 1000 \cdot RDK - 100$	(RDK > 1,0)	3
$\rho_{\rm w}$ = 1000 ·RDK - 50	(Klassenbreite der RDK 100 kg/m³ und RDK \leq 1,0)	4
$\rho_{w} = 1000 \cdot RDK - 25$	(Klassenbreite der RDK 50 kg/m³ und RDK ≤ 1,0)	5

Die Rohdichten für Mauerwerk aus Füllsteinen, Schalungssteinen und anders gearteten Wandbauarten sind beim jeweiligen Hersteller zu erfragen.

Mit:

RDK = Rohdichteklasse

Tab. EL. 2: Rohdichten gängiger Baustoffe

Baustoffe	Rohdichte in kg/m³	Zeile
Unbewehrter Normalbeton	2350	1
Bewehrter Beton	2400	2
Leichtbeton	800 – 2000	3
Ziegel	500 – 2400	4
Kalksandstein	1200 – 2400	5
Porenbeton	200 – 800	6

Zusätzlich zur flächenbezogenen Masse der Wand (mit oder ohne Mörtel) ist die flächenbezogene Masse des Putzes zu berücksichtigen.

$$m'_{ges.} = m'_{Wand} + m'_{Putz}$$
 (19)

Mit:

m′_{qes.} Flächenbezogene Masse des Grundbauteils mit Putz in kg/m²

Flächenbezogene Masse des Grundbauteils in kg/m²

 $\mathbf{m'}_{\mathsf{Putz}}$ Flächenbezogene Masse des Putzes in kg/m² (ein-, / beidseitig) Die flächenbezogene Masse von Putzen wird über die Rohdichte des jeweiligen Putzes und der Putzschichtdicke ermittelt.

$$m'_{Putz} = d_{Putz} \cdot \rho_{Putz}$$
 (20)

Nenndicke einer Putzschicht in m d_{Putz} Rohdichte der Putzschicht in kg/m³

Tab. EL. 3: Rohdichten ausgewählter Putze

Putz	Rohdichte	Zeile
Gips- und Dünnlagenputz	1000 kg/m³	1
Kalk- und Kalkzementputz	1600 kg/m³	2
Leichtputz	900 kg/m³	3
Wärmedämmputz	250 kg/m³	4

Bei der Berechnung des Luftschalldämm-Maßes von massiven, einschaligen Bauteilen wird zwischen unterschiedlichen Materialien der Grundwand unterschieden.

Das bewertete Schalldämm-Maß R_w für Bauteile aus Beton, Betonsteinen, Kalksandsteinen, Mauerziegel und Verfüllsteinen berechnet sich wie folgt:

$$R_w = 30.9 lg \left(\frac{m'_{ges}}{m'_0} \right) - 22.2$$
 (21)

m'_{ges.} = Flächenbezogene Masse des Grundbauteils inkl. Putz mit $65 \text{ kg/m}^2 \le \text{m'}_{\text{ges}} \le 720 \text{ kg/m}^2$

= Bezugsgröße mit m′₀ = 1 kg/m²

Für Bauteile aus Leichtbeton errechnet sich das Schalldämm-Maß Rw zu:

$$R_w = 30.9 lg \left(\frac{m'_{ges}}{m'_0} \right) - 20.2$$
 (22)

m' ges. = Flächenbezogene Masse des Grundbauteils inkl. Putz mit

140 kg/m² \leq m'_{qes} \leq 482 kg/m²

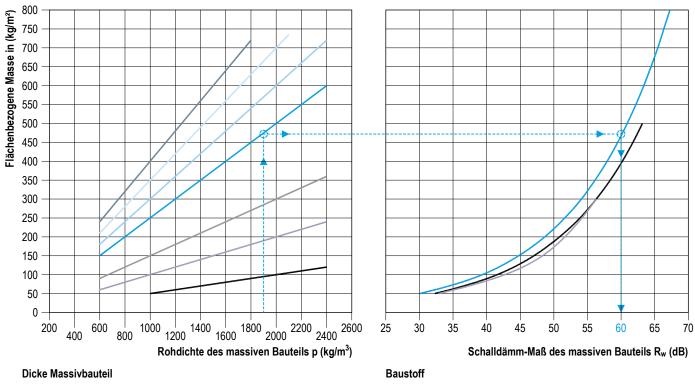
= Bezugsgröße mit m'₀ = 1 kg/m²

Bei der Verwendung von Bauteilen aus Porenbeton muss zusätzlich zwischen zwei Bereichen für die flächenbezogene Masse unterschieden werden.

$$R_{w} = 32,6lg \left(\frac{m'_{ges}}{m'_{0}}\right) - 22,5$$
 für 50 kg/m² \leq m´_{ges} $<$ 150 kg/m²

$$R_{w} = 21,6lg \left(\frac{m'_{ges}}{m'_{0}}\right) - 8,4$$
(24)

für 150 kg/m² \leq m $'_{qes} \leq$ 300 kg/m²


= Bezugsgröße mit m′₀ = 1 kg/m²

Gem. DIN 4109 Teil 2 und Teil 32

Diagrammverfahren

Auf Grundlage des Berechnungsverfahren nach DIN 4109-2:2018 und DIN 4109-32:2016 wurde folgendes Diagrammverfahren entwickelt, um das Schalldämm-Maß massiver Bauteile (auch Decken) bestimmen zu können. Die Masse der Putzschichten wird dabei nicht berücksichtigt, wodurch die Abschätzung das zu erwartende Schalldämm-Maß etwas unterschätzt und somit auf der sicheren Seite liegt.

Abb. EL. 1: Diagrammverfahren zur Bestimmung des Schalldämm-Maß massiver Bauteile (auch Decken) gem. DIN 4109-2:2018

0,05 m	0,25 m
0,10 m	0,30 m
0,15 m	0,35 m
0,20 m	0,40 m

Beton, Betonstein, Kalksandstein, Mauerziegel und Verfüllstein
 Leichtbeton

Leichtbeton
Porenbeton

Rechenbeispiel:

Kalksandstein-Trennwand mit Dünnbettmörtel

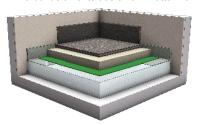
■ Rohdichteklasse der Wand 2,0

Rohdichte der Wand

 \blacksquare ρ_w = 1000 \cdot 2,0 - 100 = 1900 kg/m³ (nach Tab. EL 1)

Mit Hilfe des Diagramms wurde ein Schalldämm-Maß der massiven Wand von $R_w = 60 \text{ dB}$ ermittelt

Vorsatzschalen, Unterdecken und Estrich auf Dämmschicht



Gem. DIN 4109 Teil 34

Ausführungsarten

Nach DIN 4109-34:2016 wird zwischen zwei Arten der Ausführungen unterschieden.

- Vorsatzkonstruktionen, die unmittelbar mit dem Grundbauteil über eine Dämmschicht verbunden sind, z. B.:
 - Schwimmend verlegte Estriche auf Dämmschicht
 - Verbundelemente aus einem Plattenwerkstoff und Dämmschicht

Vorsatzkonstruktionen, die freistehend oder elastisch entkoppelt mit dem Grundbauteil verbunden sind. Zur Minderung des Einbruchs in der Schalldämmung aufgrund von Resonanzeffekten ist der Hohlraum zwischen Grundbauteil und Vorsatzkonstruktion mindestes zu 70 % mit einem geeigneten Dämmstoff mit einem Strömungswiderstand r von 5 kPa⋅s/m² ≤ r ≤ 50 kPa⋅s/m² zu füllen.

Ein Beispiel hierfür ist: W623.de

Berechnungsverfahren

Die Verbesserung durch Vorsatzkonstruktionen ist abhängig von der flächenbezogenen Masse des Grundbauteils m $_1^{'}$, der flächenbezogenen Masse der Vorsatzschale m $_2^{'}$ und bei Vorsatzkonstruktionen, die unmittelbar mit dem Grundbauteil verbunden sind, von der dynamischen Steifigkeit des Dämmstoffs s $^{'}$ bzw. bei Vorsatzkonstruktionen die freistehend oder elastisch entkoppelt mit dem Grundbauteil verbunden sind von der Hohlraumtiefe d. Über diese Parameter lässt sich die für die Verbesserung ausschlaggebende Resonanzfrequenz \mathbf{f}_0 des Systems berechnen.

 Berechnung der Resonanzfrequenz für Vorsatzkonstruktionen die unmittelbar mit dem Grundbauteil verbunden sind

$$f_0 = 160 \sqrt{s' \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} Hz$$
 (25)

Beispiel:

- 200 mm Stahlbetondecke mit einer Rohdichte ρ = 2400 kg/m³ m′₁ = 0,20 m· 2400 kg/m³ = 480 kg/m²
- 60 mm Calciumsulfat-Fließestrich FE 50 mit einer Rohdichte ρ ≈ 2000 kg/m³ m′₂ = 0,06 m· 2000 kg/m³ = 120 kg/m²
- Trittschall-Dämmplatte Knauf Insulation TPT 01 30-5 mit s′ ≤ 8 MN/m³

$$f_0 = 160 \sqrt{8 \text{ MN/m}^3 \left(\frac{1}{480 \text{ kg/m}^2} + \frac{1}{120 \text{ kg/m}^2}\right)} \text{ Hz}$$

 $f_0 = 46 \text{ Hz}$

 Berechnung der Resonanzfrequenz für Vorsatzkonstruktionen die freistehend oder elastisch entkoppelt mit dem Grundbauteil verburden sind

$$f_0 = 160 \sqrt{\frac{0.08}{d} \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} \text{ Hz}$$
 (26)

Beispiel:

- 175 mm Ziegelmauerwerk mit einer Rohdichte ρ = 1400 kg/m³ m'₁ = 0,175 m·1400 kg/m³ = 245 kg/m²
- Vorsatzschale elastisch entkoppelt befestigt, z. B. W623.de mit 2x 12,5 mm Diamantplatten mit einer flächenbezogenen Masse von je 12,5 kg/m²

 $m'_{2} = 2 \cdot 12,5 \text{ kg/m}^{2} = 25 \text{ kg/m}^{2}$

■ Hohlraumtiefe d = 0,05 m

$$f_0 = 160 \sqrt{\frac{0.08}{0.05 \text{ m}} \left(\frac{1}{245 \text{ kg/m}^2} + \frac{1}{25 \text{ kg/m}^2}\right)} \text{ Hz}$$

f_o = 43 H:

Berechnung der Verbesserung der Direktschalldämmung durch einseitig angebrachte Vorsatzschalen

Anmerkung: Durch Vorsatzkonstruktionen kann das Luftschalldämm-Maß deutlich verbessert werden. Durch eine falsche Dimensionierung der Parameter s´, m´2 und d ist es jedoch auch möglich, die Schalldämmung des Grundbauteils deutlich zu verschlechtern.

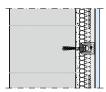
Als Faustformel gilt:

Je geringer die dynamische Steifigkeit der Dämmschicht, je höher die flächenbezogene Masse der Vorsatzschale und je tiefer der Hohlraum, desto höher ist die Verbesserung durch Vorsatzkonstruktionen.

In Abhängigkeit der berechneten Resonanzfrequenz und der Schalldämmung des Grundbauteils $R_{\rm w}$ lässt sich die Verbesserung der Direktschalldämmung für einseitig angebrachte Vorsatzschalen berechnen.

Tab. EL. 4: Bewertete Verbesserung der Direktschalldämmung durch Vorsatzkonstruktionen in Abhängigkeit von der Resonanzfrequenz fo gem. DIN 4109-34:2016-07

	0.0	
Resonanzfrequenz f ₀ der Vorsatzkonstruktion Hz	ΔR_{w} dB	Zeile
$30 \le f_0 \le 160$	max { 74,4 - 20lg f ₀ - 0,5 R _w	1
200	-1	2
250	-3	3
315	-5	4
400	-7	5
500	-9	6
630 – 1600	-10	7
> 1600 ≤ 5000	-5	8


Zwischen den Werten kann linear interpoliert werden.

Aus der Tabelle EL. 4 geht deutlich hervor, dass sich das Schalldämm-Maß durch falsch dimensionierte Vorsatzschalen verschlechtern kann. Dies ist der Fall, wenn die Resonanzfrequenz über 160 Hz liegt.

Vorsatzschalen, Unterdecken und Estrich auf Dämmschicht

Resultierendes Schalldämm-Maß von Grundwand und einseitiger Vorsatzschale

$$R_{w,res} = R_w + \Delta R_w \tag{27}$$

Rechenbeispiel einseitig angebrachte Vorsatzschale

- 175 mm Planhochlochziegel
- Mauerfuge im Dünnbettverfahren
- Einseitig verputzt 15 mm Knauf MP 75
- Rohdichte inkl. Mauerfuge 1220 kg/m³

Berechnung der flächenbezogenen Masse und Schalldämm-Maß analog Kapitel "Schalldämm-Maß von Massivwänden und -decken"

$$m' = 1220 \text{ kg/m}^3 \cdot 0,175 \text{ m} = 213,5 \text{ kg/m}^2$$

 $R_w = 30,9 \cdot \text{lg} (213,5) - 22,2 = 49,8 \text{ dB}$

Vorsatzschale W623.de:

- 1x 12,5 mm Silentboard m' ca. 17,5 kg/m²
- 40 mm Hohlraum
- 30 mm Mineralwolle z. B. Knauf Insulation TP 120 A

Berechnung der Resonanzfrequenz:

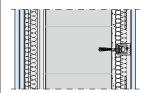
(26)
$$f_0 = 160 \sqrt{\frac{0,08}{d} \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} \text{ Hz}$$

$$f_0 = 160 \sqrt{\frac{0,08}{0,04 \text{ m}} \left(\frac{1}{213.5 \text{ kg/m}^2} + \frac{1}{17.5 \text{ kg/m}^2}\right)} \text{ Hz}$$

$$f_0 = 56 \text{ Hz}$$

Berechnung der Luftschallverbesserung:

$$\Delta R_{\rm w} = 74.4 - 20 \log f_0 - 0.5 R_{\rm w}$$


$$\Delta R_{w} = 14,5 \text{ dB}$$

Resultierendes Schalldämm-Maß aus Grundwand + Vorsatzschale:

(27)
$$R_{w,res} = R_w + \Delta R_w$$

 $R_{w,res} = 49.8 \text{ dB} + 14.5 \text{ dB}$

$$R_{wres} = 64,3 dB$$

Resultierendes Schalldämm-Maß von Grundwand und beidseitiger Vorsatzschale

Sollten auf beiden Seiten des Bauteils Vorsatzschalen vorgesehen sein, muss das Verbesserungsmaß ΔR_w für beide Seiten separat berechnet werden. Das höhere Verbesserungsmaß der beiden Vorsatzkonstruktionen wird dabei zu 100 % auf das Schalldämm-Maß des Grundbauteils addiert, das geringere Verbesserungsmaß zu 50 %.

$$R_{w,res} = R_w + \Delta R_{w,1} + 0.5\Delta R_{w,2}$$

für $\Delta R_{w,1} \ge \Delta R_{w,2}$ (28)

hzw

$$R_{w,res} = R_w + 0.5\Delta R_{w,1} + \Delta R_{w,2}$$

für $\Delta R_{w,1} < \Delta R_{w,2}$ (29)

Mit:

 $R_{w.res}$ = Luftschalldämm-Maß des Grundbauteils mit zwei Vorsatzschalen

R_w = Luftschalldämmung des Grundbauteils ohne Vorsatzschalen

 $\Delta R_{w,1}$ = Verbesserungsmaß durch die Vorsatzschale 1 $\Delta R_{w,2}$ = Verbesserungsmaß durch die Vorsatzschale 2

Rechenbeispiel beidseitig angebrachter Vorsatzschalen Grundwand und Vorsatzschale 1 analog vorangegangenen Rechenbeispiel:

$$R_{w} = 49,8 \text{ dB}$$

 $\Delta R_{w,1} = 14,5 \text{ dB}$

Vorsatzschale 2 W626.de:

- 2x 12,5 mm Silentboard m' ca. 2x 17,5 kg/m²
- 55 mm Hohlraum
- 30 mm Mineralwolle z. B. Knauf Insulation TP 120 A

Berechnung der Resonanzfrequenz:

(26)
$$f_0 = 160 \sqrt{\frac{0,08}{d} \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} \text{ Hz}$$

$$f_0 = 160 \sqrt{\frac{0,08}{0,055 \; m} \bigg(\frac{1}{213,5 \; kg/m^2} + \frac{1}{35,0 \; kg/m^2} \bigg) \; \; Hz}$$

 $f_0 = 35 \text{ Hz}$

Berechnung der Luftschallverbesserung:

$$\Delta R_{w.2} = 74.4 - 20 \log f_0 - 0.5 R_w$$

$$\Delta R_{w_2} = 18,6 \text{ dB}$$

Resultierendes Schalldämm-Maß aus Grundwand + Vorsatzschalen:

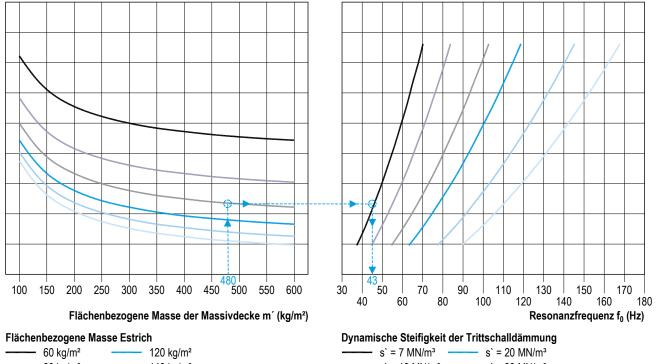
Da
$$\Delta R_{w,1} < \Delta R_{w,2}$$
 gilt:

(29)
$$R_{w.res} = R_w + 0.5 \triangle R_{w.1} + \triangle R_{w.2}$$

$$R_{wres} = 49.8 \text{ dB} + 0.5 \cdot 14.5 \text{ dB} + 18.6 \text{ dB}$$

$$R_{w,res} = 75,6 dB$$

Vorsatzschalen, Unterdecken und Estrich auf Dämmschicht

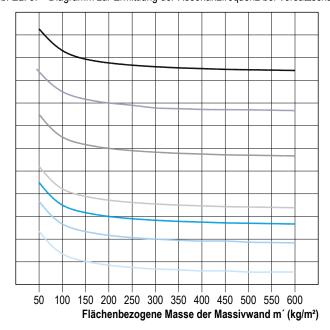

Diagrammverfahren

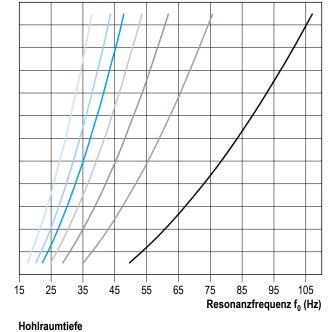
Für eine schnelle Abschätzung des Verbesserungsmaßes im Luftschallschutz durch Vorsatzkonstruktionen kann das folgende Diagrammverfahren auf Basis der DIN 4109-34:2016 angewandt werden.

Ermittlung der Resonanzfrequenz

Schwimmenden Estrich auf Massivdecke

Abb. EL. 2: Diagramm zur Ermittlung der Resonanzfrequenz bei schwimmenden Estrich auf Massivdecke




60 kg/m²	120 kg/m²
80 kg/m²	——— 140 kg/m²
100 kg/m²	160 kg/m²

 $s' = 7 MN/m^3$	s` = 20	MN/m³
$s' = 10 \text{ MN/m}^3$	s` = 30	MN/m³
$s' = 15 \text{ MN/m}^3$	s` = 40	MN/m ³

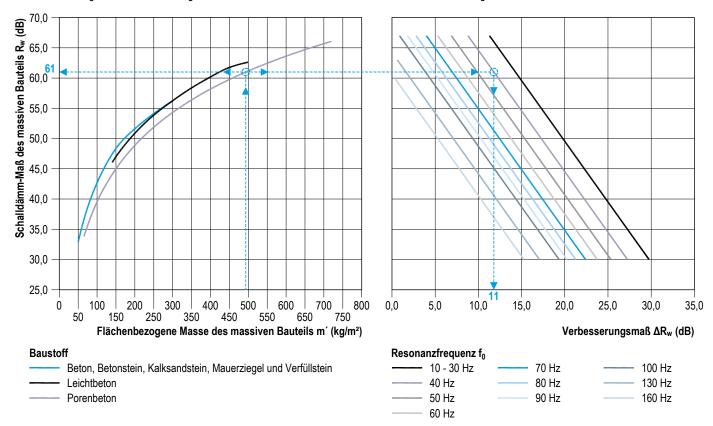
1.2 Knauf Vorsatzschalen W623.de/W625.de/W626.de vor Massivwänden

Abb. EL. 3: Diagramm zur Ermittlung der Resonanzfrequenz bei Vorsatzschalen vor Massivwänden

Flächenbezogene Masse Vorsatzschale

8,5 kg/m²	20 kg/m²
10 kg/m²	24 kg/m²
12,5 kg/m²	35 kg/m²
17,5 kg/m²	

· d = 25 mm


d = 125 mmd = 50 mmd = 150 mmd = 200 mmd = 75 mmd = 100 mm

Vorsatzschalen, Unterdecken und Estrich auf Dämmschicht

2. Bestimmung des Schalldämm-Maßes des massiven Bauteils und Verbesserungsmaßes durch Vorsatzschalen in Abhängigkeit der Resonanzfrequenz

Abb. EL. 4: Diagramm zur Bestimmung des Schalldämm-Maßes des massiven Bauteils und Verbesserungsmaßes durch Vorsatzschalen

Werden auf beiden Seiten der massiven Grundwand Vorsatzschalen vorgesehen, ist eine Berechnung analog des Vorgehens Seite 27 vorzunehmen. Die Ermittlung des Verbesserungsmaßes der zweiten Vorsatzschale kann analog dem Verfahren für die einseitige Vorsatzschale nach diesem Kapitel geführt werden.

Rechenbeispiel für eine Massivdecke mit schwimmenden Estrich

Decke:

- 200 mm Stahlbetondecke
- Rohdichte 2400 kg/m³

Flächenbezogene Masse m´ = 0,20 m · 2400 kg/m³ = 480 kg/m²

Schwimmender Estrich:

- 60 mm Calciumsulfat-Fließestrich z. B. FE 50 LARGO
- Rohdichte ca. 2000 kg/m³

Flächenbezogene Masse Estrich m' = 0,06 m \cdot 2000 kg/m³ = 120 kg/m²

Trittschalldämm-Platte:

■ 35 mm Mineralfaser-Trittschalldämm-Platte mit s′ < 7 MN/m³

z. B. Knauf Insulation TPT 01 35-5

Resonanzfrequenz

nach Abb. EL. 2

 f_0 ca. 43 Hz

Schalldämm-Maß und Schalldämm-Verbesserungsmaß

nach Abb. EL. 4

R_w ca. 61 dB

 ΔR_w ca. 11 dB

Resultierendes Schalldämm-Maß

Aus Stahlbetondecke + schwimmenden Estrich

 $R_{w,res}$ = 61 dB + 11 dB

 $R_{w,res} = 72 dB$

Berücksichtigung von Öffnungen und zusammengesetzten Bauteilen

Bestimmung des resultierenden Schalldämm-Maßes zusammengesetzter Bauteile

Oftmals ist es erforderlich das resultierende Schalldämm-Maß $R_{\rm w,res}$ eines aus mehreren Elementen zusammengesetzten Bauteils zu bestimmen. Das resultierende Schalldämm-Maß einer Außenwand kann sich beispielsweise aus der Wand an sich, den Fenstern und Verglasungen sowie Türen zusammensetzen. Entsprechendes gilt beispielsweise für Metallständerwände mit Wandverjüngungen und/oder Verglasungen.

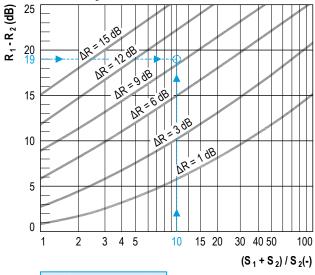
Das resultierende Schalldämm-Maß aus der Summe der Einzelkomponenten hängt von zwei Faktoren ab:

- Flächenanteil
- Bewertetes Schalldämm-Maß

Das resultierende Schalldämm-Maß $\rm R_{w,res}$ errechnet sich in Analogie zur DIN 4109-2:2018-01 nach folgender Formel:

$$R_{w,res} = -10lg \left[\frac{1}{S_{ges}} \sum_{i=1}^{n} S_i \cdot 10^{-\frac{R_{i,w}}{10}} \right] dB$$
 (30)

Mit:


S_{ges} = Gesamte, betrachtete Bauteilfläche in m²

S_i = Fläche der betrachteten Einzelkomponente in m²

R_{i,w} = Bewertetes Schalldämm-Maß der betrachteten Einzelkomponen-

Setzt sich ein Bauteil aus lediglich zwei Komponenten zusammen, z. B. Trennwand und Tür, so kann das Diagrammverfahren nach Abb. EL. 5 angewendet werden.

Abb. EL. 5: Nomogramm zur Ermittlung des Schalldämm-Maßes R_{res} zusammengesetzter Bauteile

S₂ S₁

 $R_{w,res} = R_1 - \Delta R$

R₁: Schalldämmung der besseren Teilfläche in dB
 R₂: Schalldämmung der schlechteren Teilfläche in dB

S₁ + S₂: Gesamtfläche in m²

S₁: Teilfläche des Bauteils mit der besseren Schalldämmung in dB
 S₂: Teilfläche des Bauteils mit der schlechteren Schalldämmung in m²
 AR: Reduzierung des Schalldämm-Maßes der besseren Teilfläche in dB

Rechenbeispiel

■ Trennwand

W112.de Metallständerwand - Einfachständerwerk CW 75, 2x 12,5 mm Diamant R_1 = 61,5 dB

Trennwandfläche S₁ = 13,5 m²

■ Monoblockfenster FlatWin R₂ = 42,5 dB FlatWin-Fläche S₂ = 1,5 m²

Bestimmung des Flächenverhältnisses:

 $(S_1 + S_2) / S_2$

 $(13.5 \text{ m}^2 + 1.5 \text{ m}^2) / 1.5 \text{ m}^2 = 10$

Bestimmung der Differenz aus den Schalldämm-Maßen

61,5 dB - 42,5 dB = 19 dB

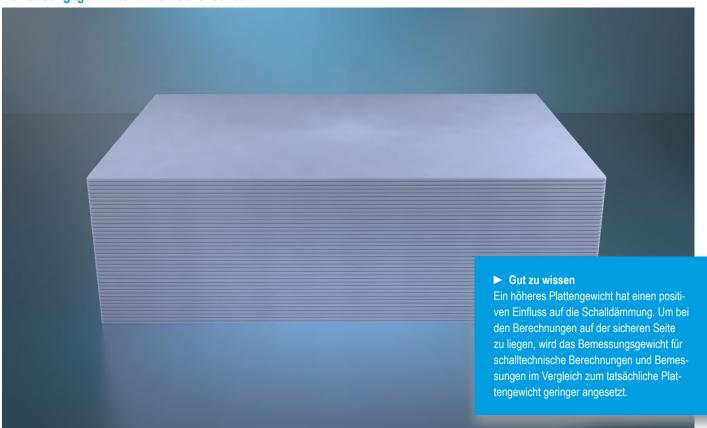
Ablesen der Schalldämm-Minderung ΔR

nach Abb. EL. 5

 $\Delta R = 10 \text{ dB}$

Berechnung des resultierenden Schalldämm-Maßes $R_{w\, res}$

 $R_{w res} = 61,5 dB - 10 dB = 51,5 dB$



Eingangsdaten

Bemessungsgewichte für den Schallschutz

Bemessungsgewichte für den Schallschutz

Tab. BG. 1: Bemessungsgewichte Knauf Platten

Produkt	Dicke in mm	Bemessungsgewicht (schalltechnisch) kg/m²	Zeile
Basisplatten			
Ausbauplatte GKB	9,5	6,50	1
Ausbauplatte GKB / GKBI / GKF	12,5	8,50	2
Bauplatte GKB	9,5	6,50	3
Bauplatte GKB / GKBI	12,5	8,50	4
Feuerschutzplatte Knauf Piano GKF / GKFI	12,5	10,00	5
Feuerschutzplatte GKF / GKFI	15	12,00	6
Feuerschutzplatte GKF	18	14,40	7
Massivbauplatte GKF / GKFI	20	17,10	8
Massivbauplatte GKF / GKFI	25	20,40	9
Funktionsplatten			
Diamant GKFI / Diamant X GKFI	12,5	12,50	10
Diamant GKFI / Diamant X GKFI	15	15,00	11
Diamant GKFI / Diamant X GKFI	18	18,00	12
Silentboard GKF	12,5	17,50	13
Fireboard	12,5	10,00	14
Fireboard	15	12,00	15
Fireboard	20	16,00	16
Fireboard	25	20,00	17
Fireboard	30	24,00	18

Eingangsdaten für den rechnerischen Nachweis

Flankierende Bauteile

Schall-Längsdämm-Maß

In der Praxis wird der Einfluss der flankierenden Bauteile oftmals unterschätzt. In Tab. FB. 1 sind einige kritische Flanken aufgeführt und Verbesserungsmöglichkeiten angegeben.

Natürlich hängt die notwendige Verbesserung der einzelnen Flanken immer von dem angestrebten Schallschutzniveau der Gesamtkonstruktion ab. In den folgenden Tabellen sind für verschiedene, flankierende Bauteile die Norm-Flankenpegeldifferenzen angegeben. Die Werte basieren dabei auf Angaben aus dem Beiblatt 1 zur DIN 4109:1989, der DIN 4109-33 sowie eigenen Messungen/Untersuchungen.

Kritische Flanken

Tab. FB. 1: Einige schallschutztechnisch kritische Flanken und Aufwertungsmöglichkeiten

Schemazeichnungen	Trennwand an Flanken	Mögliche Aufwertungsmaßnahmen	Zeile
	Leichte Massivwände; Leichte Massivdecken	■ Bei einem unzureichenden Flankenschalldämm-Maß kann die massive Flanke durch eine Vorsatzschale bzw. Unterdecke aufgewertet werden.	1
	Boden mit schwimmendem Estrich	■ Estrich in Trennwandachse aufschneiden	2
	Leichtwände; Holzbalkendecken; Abseitenwände; Dachdecken	 Trennwand auf Rohfußboden stellen Innere Plattenbeplankung in der Trennwandachse aufschneiden (siehe Abb. FB. 1, FB. 3) Nicht gedämmte Hohlräume der Flanken mit Faserdämmstoff zumindest im gesamten Anschlussfeld füllen (Absorberschott) Komplettes Einbinden der Trennwand in die Konstruktion des flankierenden Bauteils (siehe Abb. FB. 2) 	3
	Abgehängte Unterdecken	 Untere Beplankung in Trennwandachse aufschneiden Vollflächiges Auflegen von Faserdämmstoff auf die Unterdecke Bei größeren Abhängehöhen Absorberschott (Faserdämmstoff; b ≥ 300 mm) über der Trennwandachse anordnen Erst Trennwand an Rohdecke anbinden, dann Unterdecke anordnen und an Trennwand anbinden 	4
	Leichte Fassaden (Metall, Glas u. ä.)	■ Achtung: In Anlehnung an das Beiblatt 1 zur DIN 4109:1989 kann eine Norm-Flankenpegeldifferenz von D _{nf,w} = 52 dB angesetzt werden. Sollten Herstellerangaben vorliegen, sind diese zu verwenden. Eine konstruktive Beeinflussung auf der Baustelle ist schwierig (i. d. R. in Kombination mit Wandverjüngung)	5

Schemazeichnungen

Die Messung von mit Knauf Bauplatten ausgeführten Flanken sind im Normenteil 33 der DIN 4109:2016 mit einer maximalen Norm-Flankenpegeldifferenz von 65 dB aufgeführt. Werden diese Werte des Normentwurfs für den Schallschutznachweis herangezogen, kann somit eine maximale Schallschutzqualität im eingebauten Zustand von R'_w < 65 dB nachgewiesen werden. Für Bauten ohne höhere Schallschutzanforderungen kann dies bereits ausreichend sein. Sollen jedoch erhöhte oder hohe Schallschutzanforderungen erwünscht sein, sind Modifikationen der Normkonstruktionen (Verschraubung, Ständeraufteilung, Plattenqualitäten) notwendig.

Die Modifikationen bzw. Konstruktionsdetails können aus den Abb. FB. 1 bis FB. 4 entnommen werden. In der Tab. FB. 2 sind die Normkonstruktionen mit entsprechenden Norm-Flankenpegeldifferenzen aufgeführt. Die modifizierten Ausführungen inkl. Norm-Flankenpegeldifferenzen können der Tab. FB. 3 entnommen werden

Abb. FB. 1: Darstellung gem. DIN 4109-33

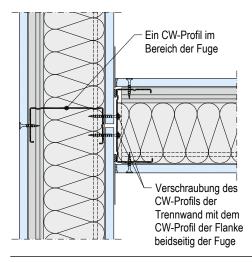


Abb. FB. 3: Darstellung Knauf Prüfaufbau Geschlitzte Flanke

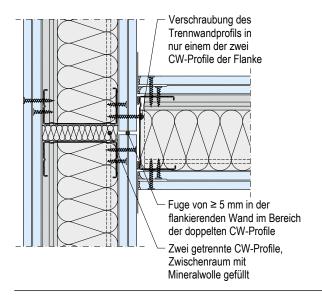


Abb. FB. 2: Darstellung Knauf Prüfaufbau Unterbrochene Flanke, einbindende Trennwand

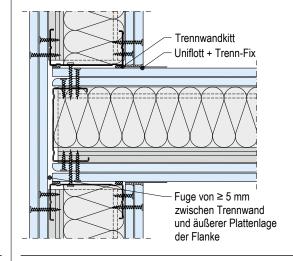
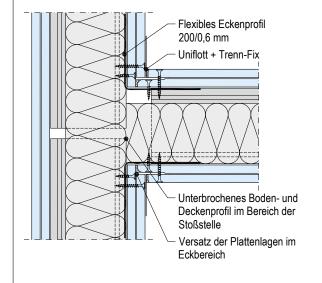



Abb. FB. 4: Darstellung Knauf Prüfaufbau Unterbrochene Flanke

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Wände – Norm-Flankenpegeldifferenz von Metallständerwänden gem. DIN 4109-33:2016

Tab. FB. 2: Bewertete Norm-Flankenpegeldifferenz von flankierenden Metallständerwänden

Ausführungsbeispiele Knauf System W111.de, W112.de		Beplankung der Innenseite der flankierenden Wand Bewertete Norm-Flankenpegeldifferenz D		eldifferenz D _{n,f,w}	Zeile
		Mindest-Dicke mm	h = 50 mm dB	h = 100 mm dB	
Durchlaufend Durchlaufende Beplankungen der flankierenden Wand ohne Fugen	h	Einlagig ≥ 12,5 Knauf Bauplatte	53	55	1
		Zweilagig ≥ 2x 12,5 Knauf Bauplatte	56	59	2
Geschlitzt Raumseitige Beplankung der flankierenden Wand mit Fuge (≥ 3 mm)	h	Einlagig ≥ 12,5 Knauf Bauplatte	57	59	3
		Zweilagig ≥ 2x 12,5 Knauf Bauplatte	60	61	4
Unterbrochen Raumseitige Beplankung unterbrochen, äußere Beplankung durchlaufend	h	Einlagig ≥ 12,5 Knauf Bauplatte	-	65	5

Flankierende Wände – Norm-Flankenpegeldifferenz von Metallständerwänden

Tab. FB. 3: Bewertete Norm-Flankenpegeldifferenz von flankierenden Metallständerwänden

Ausführungsbeispiele Knauf System W111.de, W112.de		Beplankung der Innenseite der flankierenden Wand Mindest-Dicke	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} h = 100 mm dB	Zeile
Geschlitzt Raumseitige Beplankung der flankierenden Wand mit Fuge (≥ 3 mm)	+ h +	mm Zweilagig ≥ 2x 12,5 Knauf Bauplatte	70	1
		Zweilagig ≥ 2x 12,5 Diamant	73	2
Geschlitzt Raumseitige Beplankung der flankierenden Wand mit Fuge (≥ 5 mm)		Zweilagig ≥ 2x 12,5 Silentboard	74	3
Unterbrochen Raumseitige Beplankung unterbrochen, äußere Beplankung durchlaufend, Unterkonstruktion getrennt	h	Zweilagig ≥ 2x 12,5 Knauf Bauplatte	72	4
		Zweilagig ≥ 2x 12,5 Diamant	75	5
Eingebunden Raumseitige Beplankung unterbrochen, äußere Beplankung durchlaufend	h T	Zweilagig ≥ 2x 12,5 Diamant	75	6
		Zweilagig ≥ 2x 12,5 Silentboard	76	7
Eingebunden Raumseitige Beplankung unterbrochen, äußere Beplankung durchlaufend	h	Zweilagig ≥ 1x 12,5 Silentboard + ≥ 1x 18 Diamant	80	8

Flankierende Wände

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Wände - Norm-Flankenpegeldifferenz von biegesteifen Wänden mit biegeweicher Vorsatzschale

Tab. FB. 4: Bewertete Norm-Flankenpegeldifferenz von Massivwänden mit Vorsatzschalen

Ausführungsbeispiele Knauf System W625.de, W626.de		Flächenbezoge Masse der biegesteifen Wand	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w}	Zeile
		kg/m ²	dB	
Trockenputz mit Fugenschnitt	≥ 40 mm	100	55	1
	2	200	59	2
		250	59	3
	• 1	300	60	4
	5	400	60	5
Freistehende durchlaufende Vorsatzschale mit Fugenschnitt	≥ 60 mm 2 4	≥ 100	65	6
Freistehende unterbrochene Vorsatzschale	≥ 60 mm	≥ 100	≥70	7

Legende:

- 1 Trennwand als Einfach- oder Doppelständerwand nach DIN 18183-1 oder Holz-Unterkonstruktion mit dichtem Anschluss an die Vorsatzschale.
- 2 Massivwand
- Flankierende biegeweiche Vorsatzschale, z. B. aus Verbundelement aus Gipsplatte GK mit $m' \ge 10 \text{ kg/m}^2$ und mindestens 40 mm Mineralwolle MW mit dynamischer Steifigkeit s' $\le 6 \text{ MN/m}^3$; mit Fugenschnitt durch Gipsplatte unter Trennwandanschluss, angesetzt an Massivwand.
- 4 Flankierende biegeweiche Vorsatzschale, z. B. aus Gipsplatten GK mit Metall-Unterkonstruktion nach DIN 18183-1, flächenbezogene Masse der Bekleidung m´≥ 8,5 kg/m², Dämmstoff aus Mineralwolle MW; durchgehende Fuge an innenseitiger Bekleidung, freistehend vor Massivwand.
- 5 Durchgehende Fugen an innenseitiger Bekleidung der Vorsatzschale hinter Trennwandanschluss, z. B. Fugenschnitt ≥ 3 mm.

Tab. FB. 5: Norm-Flankenpegeldifferenz flankierender Massivwände in Anlehnung an Beiblatt 1 zur DIN 4109:1989, Tabelle 25

Flächenbezogene Masse der Längswände	$D_{n,f,w}$	Zeile
kg/m ²	dB	
100	45	1
200	55	2
300	60	3
350	62	4
400	64	5
500	67	6

Blaue Werte beziehen sich auf Knauf Angaben

Gut zu wissen

Anstelle freistehender Vorsatzschalen können alternativ punktweise gekoppelte Vorsatzschalen eingesetzt werden.

Flankierende Wände – Norm-Flankenpegeldifferenz von Holzständerwänden in Anlehnung an Beiblatt 1 zur DIN 4109:1989 und DIN 4109-33

Tab. FB. 6: Bewertete Norm-Flankenpegeldifferenz von flankierenden Holzständerwänden

Ausführungsbeispiele Knauf System W121.de, W122.	de, W555.de	Beplankung der Innenseite der flankierenden Wand Mindest-Dicke mm	$\label{eq:Bewertete} \begin{aligned} & \textbf{Bewertete} \\ & \textbf{Norm-Flankenpegeldifferenz} \ \textbf{D}_{n,f,w} \\ & \textbf{dB} \end{aligned}$	Zeile
Ohne Dämmstoff im Gefach		Einlagig ≥ 12,5 GK	50	1
Mit Dämmstoff im Gefach		Einlagig ≥ 12,5 GK	52	2
Beplankung durchlaufend		Zweilagig ≥ 2x 12,5 GK	56	3
Raumseitige Beplankung im Anschlussbereich unterbro- chen		Einlagig ≥ 12,5 GK	56	4
Flankierende Wand im Anschlussbereich unterbrochen Fuge elasto-plastisch schließen		Einlagig ≥ 12,5 GK	56	5
Flankierende Wand im Anschlussbereich unterbrochen Fuge mit Dämmstoff füllen und elasto-plastisch schließen		Einlagig ≥ 12,5 GK	64	6
Vorsatzschale (27 mm auf Federschiene oder Holzlat- tung mit Dämmung) durch Trennwand unterbrochen, raumseitige Bekleidung durchlaufend		Zweilagig ≥ 2x 12,5 Diamant	≥ 68	7
Vorsatzschale (27 mm auf Federschiene oder Holzlat- tung mit Dämmung) durchlau- fend, raumseitige Bekleidung durchlaufend		Zweilagig ≥ 2x 12,5 Diamant	≥ 50	8

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Decken – Norm-Flankenpegeldifferenz von Massivdecken mit Unterdecken

Tab. FB. 7: Bewertete Norm-Flankenpegeldifferenz von Massivdecken mit Unterdecken

Tab. 1 B. 1. Bowertete Heili 1	ankenpegeramerenz von massivaecken	THE CHECICONON				
Knauf System D112.de		Beplankung Mindest-Dicke	Bewertete Norm-Flankenp Ohne Mineral- wolleauflage dB	egeldifferenz E Mit vollflächige Mineralwollear ≥ 50 mm dB	er	Zeile
Trennwandanschluss		11011	QD.	u.b	u.b	
an Unterdecke Beplankung durchlaufend	Einlagig ≥ 12,5	48	49	50	1	
		Zweilagig ≥ 2x 12,5	55	56	56	2
Trennwandanschluss an Unterdecke Beplankung getrennt		Einlagig ≥ 12,5	50	54	56	3
		Zweilagig ≥ 2x 12,5	57	59	59	4
Trennwandanschluss an Massivdecke Beplankung und Unterkonst- ruktion getrennt		Zweilagig ≥ 2x 12,5	57	65	-	5

Die Werte nach Tab. FB. 7 können bis zu einer Abhanghöhe von 400 mm angesetzt werden. Bei einer Abhanghöhe über 400 mm sind die Werte um 1 dB zu reduzieren. Durch das Vorsehen eines Plattenschotts kann die Norm-Flankenpegeldifferenz um 20 dB jedoch maximal bis 67 dB angehoben werden.

Flankierende Decken - Norm-Flankenpegeldifferenz von Massivdecken mit Unterdecken

Tab. FB. 8: Bewertete Norm-Flankenpegeldifferenz von Massivdecken mit Unterdecken

Ausführungsbeispiele Knauf System D112.de Abhängehöhe 400 mm		Beplankung Mindest-Dicke mm	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Mit vollflächiger Mineralwolleauflage ≥ 40 mm dB	Zeile
Abschottung des Deckenhohlraums Durch ein Plattenschott		Einlagig ≥12,5	67	1
Trennwandanschluss an Massivdecke Die bis zur Massivdecke hochgezogene Beplankung wirkt als Abschottung des Deckenhohlraumes		Einlagig ≥ 12,5	67	2
Trennwandanschluss an Unterdecke Beplankung getrennt mit Absorberschott ¹⁾ nach Tab. FB. 10 für b = 300 mm	b	Einlagig ≥ 12,5	62	3

¹⁾ Absorberschott aus Mineralwolle nach EN 13162, längenbezogener Strömungswiderstand r ≥ 8 kPa·s/m²

Tab. FB. 9: Norm-Flankenpegeldifferenz flankierender Massivdecken in Anlehnung an Beiblatt 1 zur DIN 4109:1989, Tabelle 25

Flächenbezogene Masse der Decke ¹⁾	$D_{n,f,w}$	Zeile
kg/m ²	dB	
100	43	1
200	53	2
300	58	3
350	60	4
400	62	5
500	65	6

Blaue Werte beziehen sich auf Knauf Angaben

Tab. FB. 10: Verbesserungsmaße der bewerteten Norm-Flankenpegeldifferenz D_{n.f.w} von Unterdecken für Tab. FB. 7 und FB 8 durch Absorberschott bei horizontaler Schallübertragung

Mindestbreite des Absorberschotts b	Verbesserungsmaß	Zeile
mm	dB	
300	12	1
400	14	2
500	15	3
600	17	4
800	20	5
1000	22	6

- Absorberschott aus Mineralwolle nach EN 13162, l\u00e4ngenbezogener Str\u00f6mungswiderstand r ≥ 8 kPa·s/m².
- Der Höchstwert aus Tab. FB. 7 und dem Verbesserungsmaß darf höchstens 62 dB betragen.

¹⁾ Flächenbezogene Masse einschließlich eines etwaigen Verbundestrichs

Flankierende Raumakustikdecken

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Decken – Norm-Flankenpegeldifferenz von Raumakustik-Plattendecken

Tab. FB. 11: Bewertete Norm-Flankenpegeldifferenz von Raumakustik-Plattendecken

Ausführungsbeispiele		Beplankung	Bewertete				Zeile
Knauf System D127.de		Cleaneo Classic Mindest-Dicke	Norm-Flanker Ohne Mineralwolle- auflage	Mit vollflächig Mineralwo ≥ 20 mm	er blleauflage ² ≥ 40 mm) ≥80 mm	
Konstruktionstiefe 200 mm		mm	dB	dB	dB	dB	
Trennwandanschluss an Unterdecke Beplankung durchlaufend		≥ 12,5 Gerade Quadratlochung 12/25 Q	22,4	37,4	35,9	46,2	1
		≥ 12,5 Gerade Rundlochung 8/18 R	27,6	37,5	42,4	45,9	2
		≥ 12,5 Streulochung 8/15/20 R	27,7	39,7	42,8	50,0	3
Trennwandanschluss an Unterdecke Beplankung durchlaufend mit Absorberschott ¹⁾	625 mm	≥ 12,5 Gerade Quadratlochung 12/25 Q	-	53,0	-	-	4
≥ 625 mm		≥ 12,5 Gerade Rundlochung 8/18 R	-	51,7	-	-	5
inn		≥ 12,5 Streulochung 8/15/20 R	-	50,2	-	-	6
In Anlehnung an DIN 4109-33:201	6-07						
Abschottung des Deckenhohlraums Durch ein Plattenschott		≥ 12,5 Lochplatte	-	-	67	-	7
Trennwandanschluss an Massivdecke Die bis zur Massivdecke hochge- zogene Beplankung wirkt als Abschottung des Deckenhohlraumes		≥ 12,5 Lochplatte	_	-	67	-	8

Blaue Werte beziehen sich auf Knauf Angaben

- 1) Absorberschott mit längenbezogenen Strömungswiderstand $r = 5 \text{ kPa} \cdot \text{s/m}^2 \text{ z. B. Knauf Insulation TP 115}$
- 2) 20 mm Mineralwolleauflage mit einem längenbezogenen Strömungswiderstand r = 11 kPa s/m², z. B. Knauf Insulation TP 120 A 40 mm und 80 mm Mineralwolleauflage mit einem längenbezogenen Strömungswiderstand r = 5 kPa s/m², z. B. Knauf Insulation TP 115

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Decken – Norm-Flankenpegeldifferenz von Raumakustik-Kassettendecken

Tab. FB. 12: Bewertete Norm-Flankenpegeldifferenz von Raumakustik-Kassettendecken

Ausführungsbeispiele Knauf System D14.de		Beplankung Cleaneo Module Mindest-Dicke	Bewertete Norm-Flanken Ohne Mineralwolle- auflage	pegeldifferenz D Mit vollflächiger Mineralwolleauf ≥ 50 mm		Zeile
Konstruktionstiefe 200 mm		mm	dB	dB	dB	
Trennwandanschluss an Unterdecke Beplankung durchlaufend	≥ 12,5 Unity 9 Kantenausbildung A+	24,2	42,4	44,5	1	
		≥ 12,5 Quadril 12 x 12 Kantenausbildung A+	21,9	40,3	42,2	2
Trennwandanschluss an Unterdecke Beplankung durchlaufend mit Absorberschott¹) ≥ 625 mm	≥ 12,5 Unity 9 Kantenausbildung A+	-	54,5	-	3	
		≥ 12,5 Quadril 12 x 12 Kantenausbildung A+	-	52,9	-	4

¹⁾ Absorberschott mit längenbezogenen Strömungswiderstand $r = 5 \text{ kPa} \cdot \text{s/m}^2 \text{ z. B. Knauf Insulation TP 115}$

^{2) 50} mm Mineralwolleauflage mit einem längenbezogenen Strömungswiderstand r = 11 kPa s/m², z. B. Knauf Insulation TP 440 80 mm Mineralwolleauflage mit einem längenbezogenen Strömungswiderstand r = 5 kPa s/m², z. B. Knauf Insulation TP 115

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Decken – Norm-Flankenpegeldifferenz von Massivdecken mit Mörtelestrich

Tab. FB. 13: Bewertete Norm-Flankenpegeldifferenz von flankierenden Massivdecken mit Estrich auf Trennlage / schwimmender Estrich

Ausführungsbeispiele Knauf System F221.de, F231.de		TWOSTVOCKOTTIIIL ESTIGIT CUI	Bewertete Norm-Flankenp Gips-, Zement-, Anhydrit- oder Magnesiaes- trich			Zeile
Flächenbezogene Masse der Massiv	decke ≥ 300 kg/m²		dB	dB	dB	
Durchlaufender Estrich auf Trennlage			44 bis 48	50 bis 52	-	1
Durchlaufender Estrich auf Mineralwolle/Faserdämmschicht			40	46	-	2
Durchlaufender Estrich mit Trennfuge auf Mineralwolle/Faserdämmschicht			57	57	-	3
Estrich durch Trennwandanschluss konstruktiv getrennt Nass- und Gussasphaltestrich: Estrichdicke ≥ 35 mm Trittschalldämmschicht mit dynamischer Steifigkeit ≤ 30 MN/m³ Fertigteilestrich: Brio 18 WF			64	64	64	4
Estrich durch Trennwandanschluss konstruktiv getrennt ■ Nass- und Gussasphaltestrich: ■ Estrichdicke ≥ 60 mm ■ Trittschalldämmschicht mit dynamischer Steifigkeit ≤ 10 MN/m³ ■ Fertigteilestrich: ■ 2x Brio 23 ■ Knauf Insulation Trittschall-Dämmplatte TP-GP 20 mm			73	73	73	5

Flankierende Decken – Norm-Flankenpegeldifferenz von Holzbalkendecken mit Unterdecke

Tab. FB. 14: Bewertete Norm-Flankenpegeldifferenz von flankierenden Holzbalkendecken

Ausführungsbeispiele Knauf System D151.de, D152.de	Beplankung Mindest-Dicke	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Mit vollflächiger Mineralwolleauflage ≥ 50 mm dB	Zeile
Deckenbekleidung durchlaufend; Trennwand parallel oder rechtwinkelig zu Deckenbalken	Einlagig ≥12,5 Knauf Bauplatte	52	1
Deckenbekleidung im Anschlussbereich der Trennwand unterbrochen; Trennwand parallel oder rechtwinkelig zu Deckenbalken	Einlagig ≥ 12,5 Knauf Bauplatte	54	2
Deckenbekleidung durchlaufend; Trennwand rechtwinkelig zu Deckenbalken Weichschott oder Gefach vollständig ausgedämmt	Zweilagig ≥ 2x 12,5 Knauf Bauplatte	60	3
Deckenbekleidung mit Holz-Unterkonstruktion im Anschlussbereich der Trennwand unterbrochen; Trennwand rechtwinkelig zu Deckenbalken eingebunden Weichschott oder Gefach vollständig ausgedämmt	Zweilagig ≥ 2x 12,5 Diamant	61	4
Deckenbekleidung mit Federschiene im Anschlussbereich der Trennwand unterbrochen; Trennwand rechtwinkelig zu Deckenbalken eingebunden Weichschott oder Gefach vollständig ausgedämmt	Zweilagig ≥ 2x 12,5 Diamant	67	5

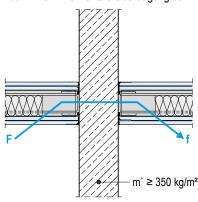
Flankierende Decken

Norm-Flankenpegeldifferenz $\mathbf{D}_{\mathrm{n,f,w}}$

Flankierende Decken – Norm-Flankenpegeldifferenz von Holzbalkendecken mit Fertigteilestrich

Tab. FB. 15: Bewertete Norm-Flankenpegeldifferenz von Holzbalkendecken

Ausführungsbeispiele Knauf System F127.de	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Mit vollflächiger Mineralwolleauflage ≥ 25 mm dB	Zeile
Fertigteilestrich durch Trennwand konstruktiv getrennt Trennwand parallel zu Deckenbalken	67	1
Fertigteilestrich durch Trennwand konstruktiv getrennt Trennwand rechtwinklig zu Deckenbalken	67	2

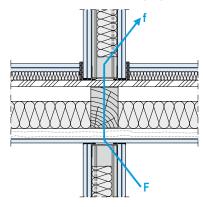

Schallübertragung von Metallständerwänden über Trenndecken u. -wände

Norm-Flankenpegeldifferenz von Mischbauweisen in horizontaler und vertikaler Richtung

Für die flankierende Schallübertragung von Metallständerwänden, über ein massives Trennbauteil mit einer flächenbezogenen Masse von m´ $\geq 350 \text{ kg/m}^2$ hinweg kann eine bewertete Norm-Flankenpegeldifferenz von D_{n.f.w}= 76 dB angesetzt werden.

Horizontale und vertikale Übertragung

Abb. FB. 5: Horizontale Übertragung bei Trennbauteile m' ≥ 350 kg/m²



Für flankierende Metallständerwände, die durch eine Trenndecke (Holzbalken- oder Massivholzdecke) unterbrochen werden, gilt für die **vertikale** Übertragungsrichtung ein

 D_{nfw} = 67 dB.

Vertikale Übertragung

Abb. FB. 6: Vertikale Übertragung bei Trenndecken

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Dächer – Norm-Flankenpegeldifferenz von Sparrendächern in Mehrfamilienwohnhäuser

Tab. FB. 16: Bewertete Norm-Flankenpegeldifferenz, sonstige Flankenübertragung

Ausführungsbeispiele Knauf System D612.de Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer		Beplankung	Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Mit vollflächiger Mineralwolleauflage	Zeile
Darstellungen ohne Berucksichtig Anforderungen	gung warme- und feuchtetechnischer	Mindest-Dicke mm	≥ 100 mm dB	
Durchlaufend Beplankung durchlaufend Dachhaut		≥12,5	55	1
		≥2x 12,5	56	2
Geschlitzt Beplankung im Anschlussbereich der Trennwand durch	Dachhaut	≥12,5	57	3
Fuge getrennt		≥2x 12,5	59	4
		2x 20 oder 25 + 18	62	5
Abschottung im Deckenhohlraum Mit oberseitiger Abdeckung aus Spanplatte oder Verbretterung		≥12,5	≥ 67	6
		≥2x 12,5	≥72	7
Abschottung im Deckenhohlraum Ohne oberseitige Abdeckung		≥12,5	≥ 67	8
		≥2x 12,5	≥72	9

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Dächer - Norm-Flankenpegeldifferenz von Sparrendächern von Reihen- und Doppelhaushälften

Tab. FB. 17: Dachanschlüsse der Trennwand gem. DIN 4109-33:2016-07, Tabelle 30

Schemazeichnugen Anschluss Trennwand Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer Anforderungen	Zeile
Dachkonstruktion wird durch Trennwand unterbrochen : Lattung und Wärmedämmung sind getrennt.	Α
Dachkonstruktion wird durch Trennwand unterbrochen und im Bereich des Wandkopfes bedämpft : Zusätzliche Maßnahmen zur Bedämpfung des Hohlraumes zwischen Dachdeckung und Trennwandkopf. Lattung und Wärmedämmung sind getrennt.	В
Dachkonstruktion wird durch Trennwand unterbrochen , im Bereich des Wandkopfes bedämpft und abgeschottet : Hohlraum zwischen Dachdeckung und Trennwandkopf abgeschottet (z. B. Aufmauerung mit wärmedämmenden Steinen; Dachsteine eingemörtelt; absorbierende Wärmedämmung zwischen der zweischaligen Aufmauerung; Dachlattung getrennt).	С

■ Die dargestellten Dachkonstruktionen können mit Trennwand in Massivbauweise einschalig oder zweischalig bzw. in Holz-, Leicht- und Trockenbauweise ausgeführt sein.

Flankierende Dächer

Norm-Flankenpegeldifferenz $D_{n,f,w}$

Flankierende Dächer - Norm-Flankenpegeldifferenz von Sparrendächern von Reihen- und Doppelhaushälften

Tab. FB. 18: Bewertete Norm-Flankenpegeldifferenz D_{n,f,w} von Dächern mit Aufsparrendämmungen aus Hartschaum bei horizontaler Schallübertragung gem. DIN 4109-33:2016-07, Tabelle 31

geni. Din 4103-33.2010-07, Tabelle 31					
Dachaufbau Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer Anforderungen Konstruktionsdetails			enpegeldiffer iss nach Tab. F B dB	enz D _{n,f,w} FB. 17	Zeile
Grundkonstruktion					
 ■ Dachdeckung ■ Lattung, Konterlattung ■ ≥ 100 mm Hartschaumplatte¹⁾ ■ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		53 ⁵⁾	58 ⁵⁾	65	1
Zusätzliche Beschwerungslage					
 Dachdeckung Lattung, Konterlattung ≥ 100 mm Hartschaumplatte¹⁾ Zusätzliche Beschwerungslage²⁾ einlagig m' ≥ 10 kg/m² ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		56 ⁵⁾	60	69	2
Zusätzliche Dämmschicht					
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 100 mm Hartschaumplatte¹⁾ □ ≥ 20 mm zusätzliche Dämmung unten³⁾ □ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		53 ⁵⁾	> 60	72	3
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 20 mm zusätzliche Dämmung unten⁴⁾ □ ≥ 100 mm Hartschaumplatte¹⁾ □ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		60 ⁵⁾	66	73	4

- 1) Hartschaumplatten EPS, XPS oder PUR mit dem Anwendungsgebiet DAD.
- 2) Zusätzliche Beschwerungslage, ein- oder mehrlagig bestehend aus z. B.: Bitumenbahnen (d ≥ 4 mm, schwer), Gipsplatte GK, Gipsfaserplatte GF, Zementgebundene Spanplatte ZSP.
- Zusätzliche D\u00e4mmung unten aus Mineralwolle MW mit dem Anwendungsgebiet DES-sm oder elastifizierter Polystyrol-Hartschaum EPS mit dem Anwendungsgebiet DES-sm.
- 4) Zusätzliche Dämmung oben aus Mineralwolle MW mit dem Anwendungsgebiet DAD-dm, Holzwolleleichtbauplatte WW mit dem Anwendungsgebiet DAD-dh oder Hartschaumplatte EPS, XPS oder PUR mit dem Anwendungsgebiet DAD.
- 5) Bei Konstruktionsänderungen sind nachfolgende Korrekturwerte $\Delta D_{n,f,w}$ auf die Norm-Flankenpegeldifferenz $D_{n,f,w}$ zu addieren:
 - Zu Zeilen 1 bis 4, Spalte 3: Durchlaufende Vordachschalung; für den Wohnungsbau nicht geeignet
- Zu Zeile 1, Spalte 3: Durchlaufende Hartschaum Dämmschicht über der Trennwand:

 $\Delta D_{n,f,w} = -5 \text{ dB},$

Zu Zeile 1, Spalte 4: Zusätzliche Unterschale aus Gipsplatten mit Bedämpfung zwischen bzw. unter den Sparren:

 $\Delta D_{n,f,w} \ge +8 \text{ dB}.$

Norm-Flankenpegeldifferenz $D_{n.f.w}$

Flankierende Dächer - Norm-Flankenpegeldifferenz von Sparrendächern von Reihen- und Doppelhaushälften

Tab. FB. 19: Bewertete Norm-Flankenpegeldifferenz D_{n,f,w} von Dächern mit Aufsparrendämmungen aus Mineralwolle bei horizontaler Schallübertragung gem. DIN 4109-33:2016-07, Tabelle 32

Dachaufbau Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer Anforderungen Konstruktionsdetails			Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Dachanschluss nach Tab. FB. 17 A B C dB dB dB		
 ■ Dachdeckung ■ Lattung, Konterlattung ■ 100 bis 140 mm Mineralwolleplatte MW¹¹) ■ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		65 ³⁾	68	>75	1
 Dachdeckung, Lattung, Konterlattung ≥ 160 mm Mineralwolleplatte MW¹) Zusätzliche Beschwerungslage²) einlagig m´ ≥ 10 kg/m² ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		69	> 70	>75	2

- 1) MW Mineralwolleplatte mit dem Anwendungsgebiet DAD-dm.
- 2) Zusätzliche Beschwerungslage, ein- oder mehrlagig bestehend aus z. B.: Bitumenbahnen (d ≥ 4 mm, schwer), Gipsplatte GK, Gipsfaserplatte GF, Zementgebundene Spanplatte ZSP.
- 3) Bei Konstruktionsänderungen sind nachfolgende Korrekturwerte ΔD_{n f w} auf die Norm-Flankenpegeldifferenz D_{n f w} zu addieren:
 - Zu Zeile 1 Spalte 3: Durchlaufende Dämmschicht über der Trennwand $\Delta D_{n.f.w} = -9$ dB.

Tab. FB. 20: Bewertete Norm-Flankenschallpegeldifferenz D_{n.f.w} von Dächern mit Aufsparrendämmungen aus Holzfaserdämmstoffen¹⁾ bei horizontaler Schallübertragung gem. DIN 4109-33:2016-07, Tabelle 33

Dachaufbau Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer Anforderungen			Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Dachanschluss nach Tab. FB. 17 A B C		
Konstruktionsdetails		dB	dB	dB	
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 140 mm Holzfaserdämmplatte WF²) □ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		63	65 ³⁾	> 75	1
 □ Dachdeckung, ■ Lattung, Konterlattung ■ ≥ 240 mm Holzfaserdämmplatte WF²) ■ ≥ 19 mm Nut und Feder-Schalung NFS oder Holzwerkstoffplatten HW 		69 ³⁾	> 70 ³⁾	>75	2

- 1) Die Werte gelten bei einer Befestigung der Dachlattung mit geringem Anpressdruck
- 2) WF Holzfaserdämmplatte mit dem Anwendungsgebiet DAD-dm.
- 3) Bei Konstruktionsänderungen sind nachfolgende Korrekturwerte $\Delta D_{n,f,w}$ auf die Norm-Flankenpegeldifferenz $D_{n,f,w}$ zu addieren:
 - Zu Zeile 1 Spalte 4: Zusätzliche Bedämpfung des 1. Sparrenfeldes rechts und links der Trennwand:

Zu Zeile 2 Spalte 3: Hoher Anpressdruck:

Zu Zeile 2 Spalte 4: Hoher Anpressdruck; (65 bis 68):

 $\Delta D_{n,f,w} \ge +3 \text{ dB},$ $\Delta D_{n,f,w} \ge -5 \text{ dB},$

 $D_{n.f.w} = 67 \text{ dB}.$

Flankierende Dächer

Norm-Flankenpegeldifferenz $D_{n,f,w}$

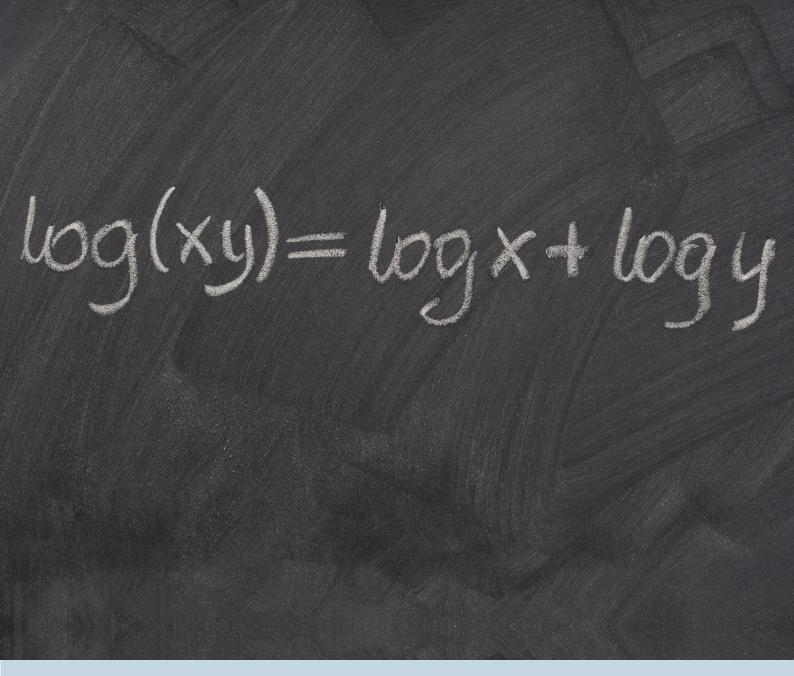
Flankierende Dächer - Norm-Flankenpegeldifferenz von Sparrendächern von Reihen- und Doppelhaushälften

Tab. FB. 21: Bewertete Norm-Flankenpegeldifferenz D_{n,f,w} von Dächern mit Zwischensparrendämmungen (Teil- oder Volldämmung) aus Faserdämmstoffen gem. DIN 4109-33:2016-07, Tabelle 34

Darstellungen ohne Berücksichtigung wärme- und feuchtetechnischer Anforderungen		Bewertete Norm-Flankenpegeldifferenz D _{n,f,w} Dachanschluss nach Tab. FB. 17			Zeile
Konstruktionsdetails		A dB	B dB	C dB	
 Dachdeckung Lattung, Konterlattung 120 bis 180 mm Zwischensparrendämmung¹⁾ Lattung 12,5 mm Gipsplatten GK 		75 ³⁾	-	-	1
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 180 mm Zwischensparrendämmung²⁾ □ Lattung □ 12,5 mm Gipsplatten GK 		79	-	-	2

- 1) Zwischensparrendämmung aus Mineralwolle MW oder Holzfaser WF, Anwendungsgebiet DZ.
- 2) Holzfaser WF, Anwendungsgebiet DZ.
- 3) Bei Konstruktionsänderungen sind nachfolgende Korrekturwerte $\Delta D_{n,f,w}$ auf die Norm-Flankenpegeldifferenz $D_{n,f,w}$ zu addieren:

 - Zu Zeile 1 Spalte 3:
 Einschalige Wand als Trennwand:
 $\Delta D_{n,f,w} = -5 \text{ dB},$


 - Zu Zeile 1 Spalte 3:
 Durchlaufende Lattung:
 $\Delta D_{n,f,w} = -10 \text{ dB},$

 - Zu Zeile 1 Spalte 3:
 Durchlaufende Pfette und Lattung:
 $\Delta D_{n,f,w} = -20 \text{ dB}.$

Tab. FB. 22: Bewertete Norm-Flankenpegeldifferenz D_{n,f,w} von Dächern mit Auf- und Zwischensparrendämmung bei horizontaler Schallübertragung gem. DIN 4109-33:2016-07, Tabelle 35

Dachaufbau Darstellungen ohne Berücksichtigung wärme- und feuchtete Konstruktionsdetails	echnischer Anforderungen		enpegeldiffer uss nach Tab. F B dB		Zeile
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 120 mm Aufsparrendämmung¹⁾²⁾ □ Holzschalung NFS □ ≥ 140 mm Zwischensparrendämmung¹⁾ □ Lattung □ 2x 12,5 mm Gipsplatten GK 		> 75 ³⁾	-	-	1
 □ Dachdeckung □ Lattung, Konterlattung □ ≥ 120 mm Aufsparrendämmung²) □ Sparren/Lufthohlraum □ Lattung □ 2x 12,5 mm Gipsplatten GK 		> 70 ³⁾	72 ³⁾	75 ³⁾	2

- 1) MW Mineralwolle oder WF Holzfaser Anwendungsgebiet DZ (zwischen Sparren), Anwendungsgebiet DAD (auf den Sparren).
- 2) Hartschaumplatten EPS, XPS oder PU, Anwendungsgebiet DAD.
- Lattung getrennt. D\u00e4mmung zwischen den Sparren durch Trennwand unterbrochen. Trennwand bis W\u00e4rmed\u00e4mmung hochgef\u00fchrt. D\u00e4mmung bei Hartschaum \u00fcber der Trennwand unterbrochen.

Erweiterte Berechnungen

Berechnung der Lage der Koinzidenzgrenzfrequenz

Einbrüche in der Schalldämmung

Berechnung der Lage der Koinzidenzgrenzfrequenz

Die Koinzidenzgrenzfrequenz (kurz Grenzfrequenz) beschreibt den Tiefpunkt des Einbruchs in der Schalldämmung von Bauteilen bei einem streifenden Schalleinfall.

Wie bereits im Kapitel Grundlagen unter dem Punkt Direktschalldämmung dargestellt ist die Lage der Koinzidenzgrenzfrequenz f_{α} abhängig von:

- Bauteildicke
- E-Modul
- Rohdichte
- Biegesteifigkeit

des betrachteten Materials.

Somit ergibt sich folgender Formelbezug:

$$f_g = \frac{c^2_L}{2\pi} \sqrt{\frac{m'}{B'}} Hz \tag{31}$$

Mit:

c_L² = Schallgeschwindigkeit in der Luft in m/s (bei 20 °C, 343 m/s)

m' = Flächenbezogene Masse des Bauteils in kg/m²

B' = Breitenbezogene Biegesteifigkeit MNm

Unter den folgenden, teilweise vereinfachten Annahmen lässt sich die Formel auch wie folgt schreiben:

$$f_g \approx \frac{60}{d} \sqrt{\frac{\rho}{E_{dyn}}} Hz$$
 (32)

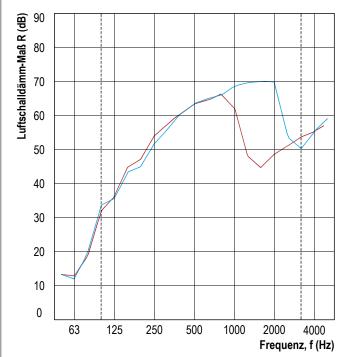
Mit:

d = Bauteildicke in m

 ρ = Rohdichte in kg/m²

E_{dvn} = Dynamischer Elastizitätsmodul in MN/m²

Aus der nachfolgenden Tabelle EB .1 können Anhaltswerte für Elastizitätsmodule und Rohdichten von verschiedenen Baustoffen als Orientierungswert zur Berechnung der Lage der Koinzidenzgrenzfrequenz entnommen werden.


Tab. EB. 1: Anhaltswerte für Rohdichten und Elastizitätsmodulen [1 und 2]

Baustoffe	Rohdichte kg/m³	Elastizitätsmodul MN/m²	Zeile
Sperrholz	600 – 800	5000 – 12000	1
Kalksandstein	1200 – 2000	3000 – 15000	2
Ziegelmauerwerk	1400 – 2000	3000 – 16000	3
Leichtbeton	700 – 1400 1300 – 1600	1500 – 13000 900 – 30000	4
Porenbeton	500 – 1000	500 – 4000	5
Schwerbeton	2000 – 2500	25000 – 40000	6
Gipskartonplatte	650 – 1450	2500 – 3800	7
Zementestrich	2200	30000	8
Stahl	7800	190000 – 210000	9

Für verschiedene Materialien sind in Abhängigkeit der Bauteildicke die Koinzidenzgrenzfrequenzen in Abb GS.17 in der Broschüre Grundlagen SS01.de dargestellt.

Anhand der Abb. EB. 1 wird der Einfluss der Koinzidenzgrenzfrequenz auf das Schalldämm-Maß gut aufgezeigt. Die Masse der dort gezeigten Beplankung ist bei beiden Metallständerwänden in etwa identisch. Die Dicke und Anzahl an Beplankungen jedoch variiert. Mit unter anderem ist das ein Grund, weshalb unter akustischen Gesichtspunkten zweilagige, dünne Beplankungen einer einlagig dicken Beplankung zu bevorzugen sind.

Abb. EB. 1: Ständerwand im Vergleich: Ein- und mehrlagige mit gleicher Beplankungdicke

Metallständerwände

 $R_{\rm w}$

W111.de; CW 75; 25 mm Massivbauplatte GKFI

51,4 dB

57,2 dB

Feuerschutzplatte Knauf Piano

KNAUF

Berechnung der Lage der Resonanzfrequenz

Einbrüche in der Schalldämmung

Berechnung der Lage der Resonanzfrequenz

Resonanzfrequenzen können nur bei mehrschaligen Systemen entstehen. Im Bereich der Resonanzfrequenz erfährt die Schalldämmung des Systems einen deutlichen Einbruch. Die Lage der Resonanzfrequenz beschreibt dabei lediglich die Spitze des Einbruchs. Erst ab dem Faktor $\sqrt{2}$ über der Lage der Resonanzfrequenz f $_0$ findet eine Verbesserung im Vergleich zu einem einschaligen System statt.

Wie bereits in der Broschüre Grundlagen SS01.de unter dem Punkt "Direktschalldämmung" beschrieben, ist Lage der Resonanzfrequenz von folgenden Größen abhängig:

- Der flächenbezogene Masse der einzelnen Schalen m' in kg/m²
- Dem Schalenabstand d in Meter
- Der dynamischen Steifigkeit der Dämmschicht (oder Luftschicht) s' in MN/m³

Für Vorsatzkonstruktionen, die über eine federnde Schicht / Dämmstoff fest mit dem Grundbauteil verbunden sind (z. B. schwimmende Estriche auf Trittschalldämm-Platten, Trockenputz-Vorsatzschalen) ergibt sich die Resonanzfrequenz zu:

$$f_0 = 160 \sqrt{s' \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} Hz$$
 (33)

Für viele Dämmstoffe, insbesondere Trittschalldämmungen liegen Herstellerangaben für die dynamischen Steifigkeiten s´ vor.

Alternativ kann die dynamische Steifigkeit wie folgt berechnet werden:

$$s' = \frac{E_{dyn}}{d} MN/m^3$$
 (34)

Für Vorsatzkonstruktionen, die freistehend vor dem Grundbauteil stehen oder körperschallentkoppelt (z. B. Direktschwingabähnger, Federschienen) mit dem Grundbauteil befestigt sind und der Hohlraum min. zu 70 % mit Dämmstoff mit einem längenbezogenen Strömungswiderstand von $5 \text{ kPa} \cdot \text{s/m}^2 \le \text{r} \le 50 \text{ kPa} \cdot \text{s/m}^2$ gefüllt ist, berechnet sich die Resonanzfrequenz zu:

$$f_0 = 160 \sqrt{\frac{0.08}{d} \left(\frac{1}{m'_1} + \frac{1}{m'_2}\right)} Hz$$
 (35)

In der Broschüre Grundlagen SS01.de werden unter dem Punkt Direktschalldämmung Abb. GS. 21 drei Prinzipien der möglichen Aufbauten von zweischaligen Systemen beschrieben.

Prinzip A:

Zwei schwere, beigesteife Schalen die über eine Feder verbunden sind

Prinzip B

Zwei biegeweiche Schalen die über eine Feder verbunden sind.

Prinzip C

Eine leichte, biegeweiche Schale die über eine Feder mit einem schweren Bauteil verbunden ist.

In Abhängigkeit der betrachteten Prinzipien und der Ausbildung der Feder lässt sich die Lage der Resonanzfrequenz nach Tab. EB. 2 vereinfacht berechnen.

Tah FR 2	Resonanzfrequenzen	zweischaliger k	Konstruktionen i	n Ahhängigkeit	des Systemaufhaus
1ab. LD. Z.	1 (C30) Idil Zil Cuuci Zcii	ZWCISCHAIIUCH I	TO I SU UNUO I GIT I		. uco ovolcinaumauo

Ausbildung der Feder	Prinzip A	Prinzip B	Prinzip C
	Die Berechnungen gelten für		
	Zwei gleichschwere Schalen		Unterschiedlich schwere Schalen
Hohlraum der beiden Schalen mit einem Dämmstoff (teilweise oder vollständig) gefüllt, der nicht fest mit den Schalen verbunden ist, z. B. zweischalige Massivwände, Vorsatzschalen vor Massivwände, Metallständerwände	$f_0 = \frac{340}{\sqrt{m' \cdot d}}$ Hz m' flächenbezogene Masse einer Schale in kg/m²	$f_0 = \frac{85}{\sqrt{m' \cdot d}}$ Hz m´ flächenbezogene Masse beider Schalen in kg/m²	$f_0 = \frac{60}{\sqrt{m' \cdot d}}$ Hz m' flächenbezogene Masse der leichteren Schale in kg/m²
Dämmstoff fest mit beiden Schalen verbunden, z. B. schwimmende Estriche, Trockenputz-Vorsatzschalen	$f_0 = 900 \sqrt{\frac{s'}{m'}} Hz$	$f_0 = 255 \sqrt{\frac{s'}{m'}} Hz$	$f_0 = 160 \sqrt{\frac{s'}{m'}} Hz$
	m' flächenbezogene Masse einer Schale in kg/m²	m' flächenbezogene Masse beider Schalen in kg/m²	m' flächenbezogene Masse der leichteren Schale in kg/m²

Anmerkuna:

In verschiedenen Literaturen sind unterschiedliche vereinfachte Berechnungsformeln der Resonanzfrequenzen aufgeführt, die sich im Ergebnis unterscheiden können. Bei strittigen Aufgabenstellungen sollte auf die Verwendung der vereinfachten Formeln nach Tab. EB. 2 verzichtet werden.

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 lphofen Knauf AMF Decken-Systeme

Knauf Design

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte

Profi-Lösungen für Zuhause

Oberflächenkompetenz

Knauf Gips

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

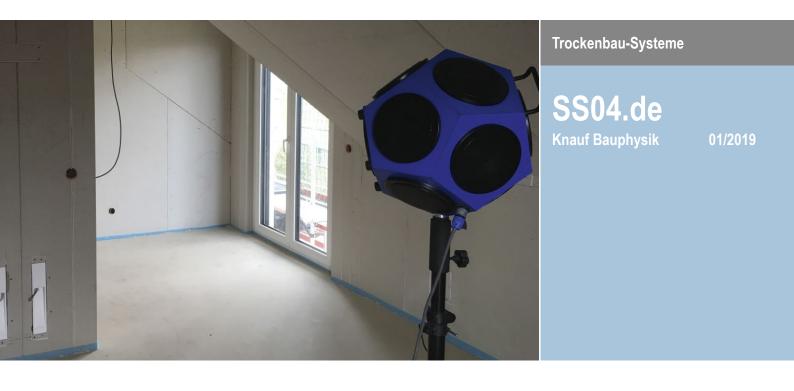
Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke

Knauf PFT

Maschinentechnik und Anlagenbau


/larbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

SS03.de/ger/01.19/0/OD

Schallschutz mit Knauf Innenwände

Inhalt

Nutzungshinweise	
Hinweise	6
Hinweise zum Dokument	6
Bestimmungsgemäßer Gebrauch von Knauf Systemen	6
Hinweise zum Schallschutz	
Quellennachweis	6
Einleitung	
Direktschalldämmung	8
Bewertetes Bauschalldämm-Maß R _w	8
W11.de Knauf Metallständerwände	
Systemübersicht	10
W111.de Einfachständerwerk – Einlagig beplankt	12
Systemvarianten	12
W112.de Einfachständerwerk – Zweilagig beplankt	13
Systemvarianten	13
W113.de Einfachständerwerk – Dreilagig beplankt	14
Systemvarianten	14
W115.de Doppelständerwerk – Zweilagig beplankt	15
Systemvarianten	15
W116.de Doppelständerwerk – Einlagig/Zweilagig beplankt	16
Systemvarianten	16
W11C.de Knauf Cleaneo Akustik-Wand	
W112C.de Cleaneo Akustik-Wand	17
Systemübersicht	17
Systemvarianten	17
W145.de Knauf Schallschutzwände	
W145.de Knauf DIVA Schallschutzwand	18
Systemübersicht	18
Systemvarianten	19
W13.de Knauf Brandwände	
Systemübersicht	20
W131.de Brandwand	21
Systemvarianten	21
W135.de Metallständerwand El 60-M	22
Systemvarianten	22
W11WK.de Knauf Sicherheitswände – Einbruchhemmend	
Systemübersicht	23
W118WK2.de WK2 / W118WK3.de WK3 Einfachständerwerk	
Systemvarianten	
W119WK2.de WK2 Doppelständerwerk	
Systemvarianten	
·	

W161.de Knauf FB4 – Durchschusshemmende Wand	26
Systemübersicht	26
Systemvarianten	26
K131.de Knauf Strahlenschutzwände Safeboard	
Systemübersicht	27
K131.de Einfachständerwerk – Einlagig/Zweilagig/Dreilagig beplankt	
Systemvarianten	
W38.de Knauf Metallständerwände AQUAPANEL	
Systemübersicht	30
W381.de/W382.de Einfachständerwerk – Einlagig/Zweilagig beplankt	32
Systemvarianten	
W383.de/W384.de Einfachständerwerk – Einlagig/Zweilagig beplankt	
Systemvarianten	33
W385.de Doppelständerwerk – Zweilagig beplankt	
Systemvarianten	34
W386.de Doppelständerwerk – Einlagig/Zweilagig beplankt	35
Systemvarianten	35
Gleitende Deckenanschlüsse	
Metallständerwände mit gleitenden Deckenanschlüssen	36
Einfluss gleitender Deckenanschlüsse auf das Schalldämm-Maß	36
W62.de Knauf Schachtwände	
Systemübersicht	38
W628A.de Ohne Unterkonstruktion freispannend – Zweilagig beplankt	40
Systemvarianten	
W630.de Riegelwerk mit CW-Profilen – Zweilagig beplankt	
Systemvarianten	41
W628B.de/W629.de Einfachständerwerk mit CW-Einfach-/ -Doppelprofilen	42
Systemvarianten	42
W635.de Einfachständerwerk mit UW-Doppelprofilen	44
Systemvarianten	44
K251.de Einfachständerwerk mit CW-Doppelprofilen – Einlagig beplankt	45
Systemvarianten	45
W61.de Knauf Vorsatzschalen	
Systemübersicht	48
W623.de Direkt befestigt – Metall-Unterkonstruktion CD 60/27	50
Systemvarianten	50
W625.de Freistehend – Metallständer CW – Einlagig beplankt	51
Systemvarianten	51
W626.de Freistehend – Metallständer CW – Mehrlagig beplankt	52
Systemvarianten	52
W653.de Vorsatzschale freistehend – Metallständer CW – Einlagig beplankt	53
Systemvarianten	53

K15.de Knauf Strahlenschutz-Vorsatzschalen Safeboard	
Systemübersicht	54
K151.de Strahlenschutz-Vorsatzschale Safeboard – direkt befestigt	55
Systemvarianten	55
K152.de Strahlenschutz-Vorsatzschale freistehend – Metallständer CW	56
Systemvarianten	56
W12.de Knauf Holzständerwände	
Systemübersicht	58
W12.de Einfachständerwerk/Doppelständerwerk	59
Systemvarianten	59
W55.de Knauf Holztafelbau-Wände	
Systemübersicht	60
W555.de Holztafelbau-Innenwand	61
Systemvarianten	61
W556.de Holztafelbau-Innenwand mit entkoppelter Beplankung	62
Einbauteile	
Fertigfenster in Monoblockbauweise	64
Systemübersicht	64
Schiebetür-System – Pocket Kit Silent	65
Systemübersicht	65
Steckdosen und Schalter	66
Steckdosen und Schalter in Metallständerwänden	66
Reduzierte Anschlüsse für Knauf Wände	
Wandverjüngungen	69
Wandverjüngungen mit einer Länge von 625 mm	69
Wandverjüngungen mit einer Länge von 312,5 mm	
Ausführungsdetails	71
Aufrüstung von Bestandswänden	
Schallschutzverbesserung von Ständerwänden	73
Schallschutztechnische Aufrüstung bestehender Ständerwände	73
Schallschutzverbesserung von Ständerwänden im Bestand mit zusätzlicher Direktbeplankung	74
Schallschutzverbesserung von Ständerwänden im Bestand mit Vorsatzschale/Aufdopplung	75

Installationsschall	
Gem. DIN 4109-36:2016-07	78
Einführung	78
Musterinstallationswand	78
Geprüfte Konstruktionen	80
Konstruktionen von Geberit	
Konstruktionen von Rehau	82
Abwasserleitungen mit Schachtwandkonstruktionen	83
Konstruktive und technologische Anforderungen und Besonderheiten	
Innenwände mit Anforderungen an den Schallschutz	87
Ständerwände mit Anforderungen an den Schallschutz	87
Vorsatzschalen mit Anforderungen an den Schallschutz	87

Nutzungshinweise

Hinweise

Hinweise zum Dokument

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Verweise auf weitere Dokumente

Weitere Broschüren des Knauf Schallschutzordners:

Bauakustik

- Grundlagen SS01.de
- Anforderungen an die Bauteile SS02.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Decken SS05.de
- Außenbauteile SS06.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Detailblätter

- Knauf Metallständerwände W11.de
- Knauf Brandwände W13.de
- Knauf DIVA Schallschutzwände W145.de
- Knauf Schachtwände W62.de
- Knauf Vorsatzschalen W61.de
- Knauf Holzständerwände W12.de
- Knauf Holztafelbau-Wände W55.de

Broschüren

- Trockenbaulösungen in Feucht- und Nassräumen FN01.de
- Knauf Cleaneo Akustik-Wandsysteme AK04.de
- Knauf Sicherheitstechnik ST01.de
- Knauf Fertigfenster in Monoblockbauweise Tro93.de
- Knauf Schiebetür-System Pocket Kit Silent W496S.de
- Knauf Diamant-Systeme DIA01.de
- Knauf Silentboard-Systeme SIB01.de
- Knauf Fireboard-Systeme FIB01.de

■ Brandschutz mit Knauf BS1.de

Bestimmungsgemäßer Gebrauch von Knauf Systemen Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. freigegeben sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

Hinweise zum Schallschutz

 R_{w} = Bewertetes Schalldämm-Maß in dB ohne Schallübertragung über flankierende Bauteile

С = Spektrum-Anpassungswerte

bzw. Werte in dB, die zu Einzahlangaben addiert werden können, um Merkmale bestimmter Schallspektren zu berücksichtigen. C_{tr}

 $\Delta R_{w,\text{heavy}}\,$ = Bewertetes Schalldämm-Verbesserungsmaß der Vorsatzschale in Verbindung mit einer Grundwand als Massivwand mit einer flächenbezogenen Masse von $350 \pm 50 \text{ kg/m}^2$ nach DIN EN ISO 10140-5 Anhang B

 f_0 = Resonanzfrequenz, nach DIN 4109-34:2016-07

Index R = Dient zur Unterscheidung der Rechenwerte von den Prüfstands-

Dämmschicht **G** (Mineralwolle-Dämmschicht nach EN 13162, nichtbrennbar), längenbezogener Strömungswiderstand nach DIN EN 29053; $r \ge 5 \text{ kPa} \cdot \text{s/m}^2$; z. B.

Knauf Insulation Trennwand-Dämmplatte TI 140 T

Die Nachweisführung der neuen DIN 4109:2018-01 erfolgt nicht mit den Rechenwerten R_{w.R}, sondern mit den Prüfstandwerten R, auf eine Nachkommastelle genau. Erst am Ende der Prognose unter Berücksichtigung aller an der Übertragung beteiligten Begrenzungsflächen (Flanken) wird in Abhängigkeit der Art des trennenden Bauteils eine Prognoseunsicherheit mit einbezogen.

Hinweise

Übergangsweise werden in den Knauf Detailblättern sowohl die Prüfstandswerte als auch die bisher ausgewiesenen Rechenwerte angegeben.

Werden anstelle der bewerteten Prüfstandswerte Werte angegeben, die auf rechnerischen Prognosen basieren bzw. von gemessenen Prüfstandswerten abgeleitet wurden, erfolgt die Angabe ohne Nachkommastelle.

Brandschutz

Für den Brandschutz sind ggf. zusätzliche Maßnahmen (z. B. zusätzliche Anforderungen an die Dämmschicht) erforderlich. Entsprechende Angaben im Brandschutzordner/Detailblatt des jeweiligen Systems sind zu berücksichti-

Informationen zu den Verwendbarkeitsnachweisen finden Sie in den Knauf Detailblättern der entsprechenden Systeme.

Quellennachweis

- Geberit Vertriebs GmbH
- REHAU AG + Co

Metallständerwände

Einleitung

Direktschalldämmung (bewertetes Bauschalldämm-Maß R_w)

Mit Knauf Metallständerwänden können neben den guten Schalldämm-Werten durch ihre konstruktive Variabilität weitere technische Anforderungen wie Wandhöhe (bis 12 m), Brandschutz, Ein- und Ausbruchsicherheit, Schusssicherheit und Strahlenschutz sowie technologische Anforderungen wie Einbau von technischen Ausrüstungen, z. B. Sanitärausrüstungen bei niedrigem Flächengewicht erfüllt werden.

Die Konstruktionspalette mit den wichtigsten Anwendungskriterien zeigen die Abbildungen auf nachfolgenden Seiten. Die technischen und bauphysikalischen Daten der Konstruktionen mit den bewerteten Schalldämm-Werten sind in den Tabellen im nachfolgenden Kapitel zusammengefasst.

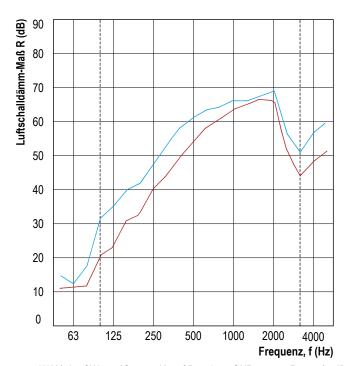

Direktschalldämmung

Abb. WE 1: Ständerwand im Vergleich:
Beplankung aus Silentboard GKF und Knauf Bauplatten GKB

90 Luftschalldämm-Maß R (dB) 70 60 50 40 30 20 10 0 125 1000 63 250 500 2000 4000 Frequenz, f (Hz)

Abb. WE 2: Ständerwand im Vergleich: Ein- und mehrlagige Beplankung

W111.de; CW 75; 12,5 mm Knauf Bauplatte GKB;

 $R_{w,R} = 45 \text{ dB}$

— W112.de; CW 75; 2x 12,5 mm Knauf Bauplatte GKB;

 $R_{w,R} = 53 \text{ dB}$

Bewertetes Bauschalldämm-Maß R_w

Auf Grund der sehr guten bautechnischen und bauphysikalischen Eigenschaften sowie der logistischen Vorteile gegenüber anderen Bauweisen sind für den Neueinbau von nichttragenden Trennwänden Ständerwände, insbesondere Metallständerwände mit Gipsplattenbeplankung, besonders geeignet

W112.de; CW 75; 2x 12.5 mm Knauf Bauplatte GKB;

W112.de; CW 75; 2x 12,5 mm Silentboard GKF;

Das Grundprinzip ist einfach. Als Unterkonstruktion werden vorgefertigte dünnwandige Metallprofile als Ständerprofile (z. B. 0,6 mm dicke C- oder M-Profile) verwendet. Die Ständerprofile werden in dünnwandige U-Profile, die an Decke und Boden befestigt sind, eingeschoben. An diese Unterkonstruktion erfolgt die kraftschlüssige Beplankung mit dünnwandigen Platten in einer oder mehreren Lagen (z. B. Gipsplatten). In dem Hohlraum zwischen den Ständern werden je nach Anforderung und Konstruktion, insbesondere aus Schall- und Brandschutzgründen, Dämmstoffe eingelegt. Das übliche Bauraster für den Ständerabstand, auf das auch die Plattenmaße abgestimmt sind, beträgt 625 mm.

Der Schallschutz von Ständerwänden wird hauptsächlich beeinflusst durch:

Entkopplung der Schalen

Für ein gut funktionierendes Feder-Masse-System ist die Entkopplung der Schalen eine der entscheidenden Kenngrößen.

Als Grundsatz gilt:

Je geringer die akustische Kopplung, desto besser ist die Schalldämmung des Systems.

Doppelständerwände mit voneinander entkoppeltem (nicht verbundenem) Ständerwerk bringen deshalb gegenüber Einfachständerwänden die besten und zuverlässigsten Ergebnisse.

Bei Einfachständerwänden ist es zur Erreichung der max. möglichen Schalldämmung erforderlich, die Ständer federnd auszubilden (z. B. CW-Profile, Holzständer mit Federschiene), um die Schallübertragung über den Ständer zu minimieren.

Plattenmasse und Struktur

 $R_{w.R} = 53 \text{ dB}$

 $R_{wR} = 66 \text{ dB}$

Ständerwände erreichen einen optimalen Schallschutz, wenn als Beplankung bauakustische biegeweiche Platten eingesetzt werden, um Koinzidenzeinbrüche und damit Schalldämmeinbrüche im relevanten Frequenzbereich weitgehend zu vermeiden. Gipsplatten in der Dicke ≤ 20 mm erfüllen diese Forderungen in Verbindung mit anderen gewünschten.

Platteneigenschaften wie Gefügezusammenhalt bei Brandbeanspruchung, optimierte Festigkeit bezüglich Plattenkern und Karton sowie einfache Verarbeitung und Handling recht gut. Die Plattenmassen liegen heute bei 12,5 mm dicken Gipsplatten in der Regel bei

■ Gips-Bauplatten GKB	ca. 8,5 kg/m²
■ Feuerschutzplatten Knauf Piano GKF	ca. 10,2 kg/m²
■ Hartgipsplatten Diamant GKFI	ca. 12,8 kg/m²
■ Schallschutzplatten Silentboard GKF	ca. 17.5 kg/m²

Mit steigender Rohdichte/Plattenmasse werden die schallschutztechnischen Eigenschaften der Gipsplatten besser.

Besonders gute Ergebnisse werden mit speziellen Schallschutzplatten der Typen Diamant und Silentboard erreicht. Diese Plattentypen besitzen bzgl. ihrer schalldämmenden Wirkung einen optimalen Plattenkern (Abb. WE 1).

Durch mehrlagige Beplankungen wird die Schalldämmung der Ständerwand gegenüber einlagiger Beplankungen wesentlich erhöht (Abb. WE 2).

Positiv auf den Schallschutz wirken sich des Weiteren aus:

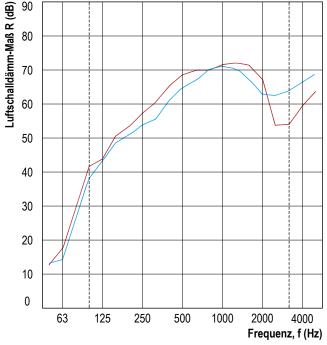
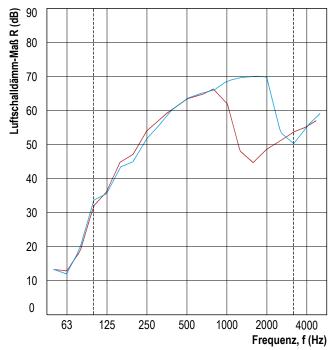

- Kombination unterschiedlicher Plattendicken bei mehrlagigen Beplankungen (Glättung des Koinzidenzeinbruchs) (Abb. WE 3).
- Bei gleicher Beplankungsdicke mehrlagige Beplankung anstelle einlagiger Beplankung (2x 12,5 mm anstelle 25 mm Platte) wählen (Koinzidenzeinbruch in unkritischeren Bereich verschieben) (Abb. WE 4).

Abb. WE 3: Ständerwand im Vergleich: Gemischte Plattendicken je Beplankungsseite

W112.de; CW 100; 2x 12,5 mm Diamant GKFI;


W112.de; CW 75; 18 m Diamant GKFI

+ 6,5 mm Knauf Bauplatte GKB;

 $R_{w,R}$ = 61 dB

 $R_{w,R} = 66 \text{ dB}$

W111.de; CW 75; 25 mm Massivbauplatte GKFI;

 $R_{w.R} = 49 \text{ dB}$

 W112.de; CW 75; 2x 12,5 mm Feuerschutzplatte Knauf Piano;

 $R_{w,R} = 55 \text{ dB}$

Hohlraumfüllung

Einen wesentlichen Einfluss hat die Füllung des Wandhohlraumes mit offenporigem Dämmstoff.

Der Faserdämmstoff in Metallständerwänden sollte nach

DIN 4109-33-2016-07 einen längenbezogenen Strömungswiderstand von $5 \text{ kPa} \cdot \text{s/m}^2 \ge \text{r} \ge 50 \text{ kPa} \cdot \text{s/m}^2$ aufweisen.

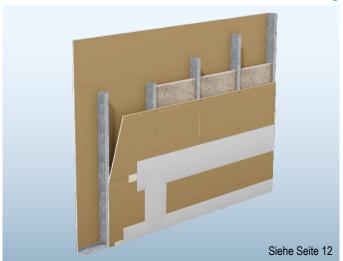
Als Grundsatz gilt:

Je höher der Füllgrad des Hohlraumes ist, desto höher ist die Verbesserung der Schalldämmung der Ständerwand gegenüber einer unbedämpften Wand (Dämmstoff nicht komprimieren).

Zur vollen Nutzung der schallschutztechnischen Leistungsfähigkeit von Ständerwänden sollte deshalb 80 bis 100 % Hohlraumfüllung angestrebt werden.

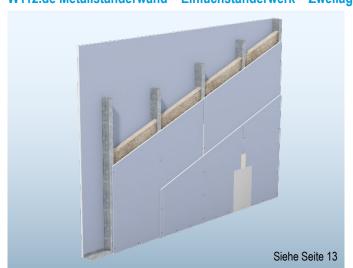
Abstand der Schalen

Der Abstand der Gipsplattenschalen, das heißt die Steghöhe der Ständerund Anschlussprofile ist nicht nur eine statische Funktion, sondern auch eine schallschutztechnische Größe. Dieser Abstand ist verantwortlich für die Lage der Resonanzfrequenz, die bei leistungsfähigen Ständerwänden deutlich unter 100 Hz liegt.


Als Grundsatz gilt:

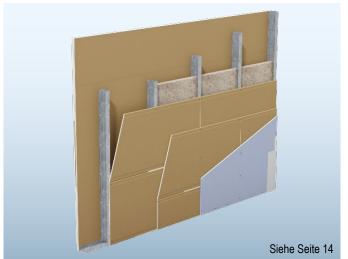
Je größer der Abstand der Schalen ist, desto niedriger ist die Resonanzfrequenz und desto größer wird i. d. R. das Schalldämm-Maß der Ständerwand.

Systemübersicht


W111.de Metallständerwand – Einfachständerwerk – Einlagig beplankt

Z. B. W111.de, 12,5 mm Silentboard

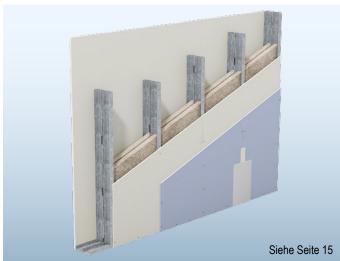
- Einfachständerwerk mit CW-Profilen
- Einlagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 44,2 bis 60,9 dB
- Gesamtdicke 75 bis 200 mm
- Wandhöhe bis 10,65 m
- Feuerwiderstand bis F30


W112.de Metallständerwand – Einfachständerwerk – Zweilagig beplankt

Z. B. W112.de, 2x 12,5 mm Diamant

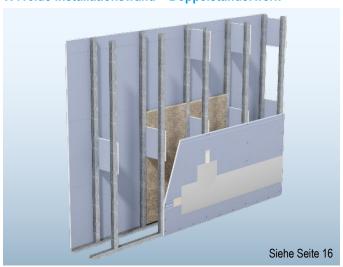
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 54,1 bis 70,4 dB
- Gesamtdicke 100 bis 225 mm
- Wandhöhe bis 12,00 m
- Feuerwiderstand bis F90

W113.de Metallständerwand – Einfachständerwerk – Dreilagig beplankt



Z. B. W113.de, 2x 12,5 mm Silentboard + 12,5 mm Diamant

- Einfachständerwerk mit CW-Profilen
- Dreilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 58,7 bis 71,6 dB
- Gesamtdicke 125 bis 225 mm
- Wandhöhe bis 12,00 m
- Feuerwiderstand bis F90



Z. B. W115.de, 12,5 mm Feuerschutzplatte Knauf Piano + 12,5 mm Diamant

- Doppelständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 64,7 bis 74,4 dB
- Gesamtdicke 155 bis 255 mm
- Wandhöhe bis 6,50 m
- Feuerwiderstand bis F90

W116.de Installationswand – Doppelständerwerk

Z. B. W116.de, 18 mm Diamant

- Doppelständerwerk mit CW-Profilen, ausgesteift
- Einlagige oder zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 52,5 bis 63,5 dB
- Gesamtdicke ≥ 141 mm
- Wandhöhe bis 6,50 m
- Feuerwiderstand bis F90

W11.de Knauf Metallständerwände

W111.de Einfachständerwerk – Einlagig beplankt

Systemvarianten

Knauf System		Bep	olank	kung	je W	land:	seite		Wand-	Profil	Schallschutz				
p q q	Feuerwiderstandsklasse	Knauf Bauplatte	Feuerschutzplatte Knauf Piano	Massivbauplatte	Diamant	Silentboard	Drystar Board	Mindest- Dicke	dicke D	Knauf CW Hohl- raum	Dämm- schicht Mindest- Dicke	Schalldär	nm-Maß Spektrum Anpassur		R _{w,R}
	Feu	Ϋ́	Feu	Mas	Dia	Sile	οŋ	mm	mm	mm	mm	dB	dB	dB	dB
W111.de Metallständerwand												Einfac	hständerwe	rk – Einlagi	ig beplankt
									75	50	40	44,2	-4,2	-10,9	42
	-	•						12,5	100	75	60	47,6	-3,5	-9,8	45
									125	100	80	50,0	-4,0	-10,3	48
									75	50	40	45,9	-4,0	-10,8	43
			•					12,5	100	75	60	48,3	-2,9	-8,6	46
	500								125	100	80	51,2	-3,2	-8,4	49
	F30								75	50	40	48,7	-3,7	-10,2	46
					•			12,5	100	75	60	51,5	-2,7	-8,1	49
									125	100	80	53,2	-3,2	-6,8	51
Ständerachsabstand						•	•	12,5	75	50	40	56,8	-4,9	-12,5	54
≤ 625 mm	-								100	75	60	59,7	-3,5	-10,2	57
									125	100	80	60,9	-2,9	-8,7	58
							•		75	50	40	44	-	_	42
	-							12,5	100	75	60	47,8	-2,4	-7,7	45
									125	100	80	50	-	-	48
									80	50	40	50,7	-3,3	-9,7	48
	F30				•			15	105	75	60	53,7	-2,5	-7,5	51
									130	100	80	54,2	-2,6	-5,5	52
									100	50	40	50,2	-2,0	-5,1	48
	_			•				25	125	75	60	51,4	-2,0	-3,8	49
									150	100	80	52,8	-2,6	-3,9	50

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweise	
L 037-01.15, L 039-09.14	

Hinweise

W112.de Einfachständerwerk – Zweilagig beplankt

Systemvarianten

Knauf System	Bej	plank	kung	je W	<i>l</i> and	seite		Wand-	Profil	Schallschutz					
======================================	klasse		Feuerschutzplatte Knauf Piano					Mindest-	dicke	Knauf CW Hohl-	Dämm- schicht Mindest-	Schalldän R _w	nm-Maß Spektrum	1-	$R_{w,R}$
5	Feuerwiderstandsklasse	Knauf Bauplatte	schutzplatte	Massivbauplatte	ant	Silentboard	Drystar Board	Dieko		raum	Dicke	'\w	Anpassur	ngswert	'w,R
	-euer	Knauf	euer	Massi	Diamant	Silent	Orysta	d mm	D mm	h mm	mm	dB	C dB	C_{tr} dB	dB
W112.de Metallständerwand						- C		111111	111111		111111				jig beplankt
									100	50	40	54,1	-4,0	-11,0	52
	F30	•						2x 12,5	125	75	60	55,9	-2,5	-7,5	53
								_x :=,0	150	100	80	58,4	-3,0	-6,6	56
									100	50	40	56,4	-3,3	-9,4	54
			•					2x 12,5	125	75	60	57,2	-3,0	-7,1	55
								_x :=,•	150	100	80	59,8	-3,7	-6,2	57
								2x 12,5	100	50	40	59,4 60,1 ¹⁾	-3,1 -3,2 ¹⁾	-7,8 -8,3 ¹⁾	57 58 ¹⁾
					•				125	75	60	61,5 63,0 ¹⁾	-3,5 -3,2 ¹⁾	-6,5 -7,2 ¹⁾	59 61 ¹⁾
									150	100	80	63,2 64,5 ¹⁾	-4,6 -3,6 ¹⁾	-5,8 -6,6 ¹⁾	61 62 ¹⁾
_⊥ Ständerachsabstand _⊥							100	50	40	67,5	-3,7	-10,0	65		
≤ 625 mm						•	•	2x 12,5	125	75	60	69,6	-3,7	-10,2	66
									150	100	80	70,4	-3,3	-9,0	67
	F90								100	50	40	54	-	-	52
							•	2x 12,5	125	75	60	56,8	-2,8	-6,3	54
									150	100	80	58	-	_	56
			•					12,5	100	50	40	59,0	-3,5	-10,0	56
								+	125	75	60	59,7	-2,5	-7,0	57
					•			12,5	150	100	80	63,0	-3,3	-6,8	60
					•			12,5	100	50	40	66,0	-4,2	-11,0	63
					•			+	125	75	60	67,4	-4,1	-10,6	64
						•		12,5	150	100	80	67,6	-2,8	-8,5	65
				•				25	125	50	40	64,4	-3,1	-9,0	62
			·					+	150	75	60	66,2	-2,9	-8,7	64
					•			12,5	175	100	80	68,0	-2,0	-6,1	66

¹⁾ Oberste Plattenlage geklammert.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen. Bei Mischbeplankungen stets Diamant als Decklage.

Schallschutz-Nachweise L 037-01.15, L 039-09.14

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe
Detailblatt Knauf Metallständerwände W11.de.

W11.de Knauf Metallständerwände

W113.de Einfachständerwerk – Dreilagig beplankt

Systemvarianten

Knauf System	Be	planl	kung	je W	/and	seite		Wand- dicke	Profil Knauf	Schallschutz					
	asse		nauf Piano						aicke	CW	Dämm- schicht	Schalldän	nm-Maß		
D U D	Feuerwiderstandsklasse	Knauf Bauplatte	Feuerschutzplatte Knauf Piano	Massivbauplatte		ard	Drystar Board	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektrum Anpassur		R _{w,R}
	Feuerwi	Knauf B	Feuersc	Massivb	Diamant	Silentboard		d mm	D mm	h mm	mm	dB	C dB	C _{tr}	dB
W113.de Metallständerwand												Einfach	ständerwer	k – Dreilagi	ig beplankt
									125	50	40	58,7	-3,4	-9,7	56
	F30	•						3x 12,5	150	75	60	58,7	-2,7	-7,3	56
									175	100	80	63,9	-3,6	-6,5	61
			•						125	50	40	61,0	-3,0	-7,6	59
								3x 12,5	150	75	60	61,1	-2,5	-6,8	59
Ständerachsabstand ≤ 625 mm									175	100	80	64,5	-4,2	-5,8	62
									125	50	40	64,8 66,6 ¹⁾	-3,6 -3,3 ¹⁾	-6,8 -7,9 ¹⁾	62 64 ¹⁾
	F90				•			3x 12,5	150	75	60	66,3 67,1 ¹⁾	-3,8 -2,8 ¹⁾	-5,8 -6,4 ¹⁾	64 65 ¹⁾
									175	100	80	67,7 68,0 ¹⁾	-5,1 -3,7 ¹⁾	-5,2 -5,6 ¹⁾	65 66 ¹⁾
								12,5	125	50	40	71,3	-3,7	-10,2	69
					,			+	150	75	60	71,6	-3,6	-9,9	69
						•		2x 12,5	175	100	80	71,3	-2,7	-8,3	69

¹⁾ Oberste Plattenlage geklammert. Bei Mischbeplankungen stets Diamant als Decklage.

Schalls	schutz-Nachweis
1 037-0	11 15

14

	Hinweise auf Seite 6 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Metallständerwände W11.de.

W115.de Doppelständerwerk – Zweilagig beplankt

Systemvarianten

Knauf System		Ве	planl	kung	je W	<i>l</i> and	seite		Wand- Profil	Schallschutz					
- C O	Feuerwiderstandsklasse	Knauf Bauplatte	Feuerschutzplatte Knauf Piano	Massivbauplatte	Diamant	Silentboard	Drystar Board	Mindest- Dicke d mm	D mm	Hohl-raum h mm	Dämm- schicht Mindest- Dicke	Schalldän ${f R}_{f w}$	Spektrum Anpassur C dB		$R_{w,R}$
W115.de Metallständerwand														c – Zweilagi	
									155	2x 50 105	40	64,7	-3,3	-9,6	62
	F30	•						2x 12,5	205	2x 75 155	60	66,6	-3,0	-9,4	64
									255	2x 100 205	80	67,6	-2,8	-8,9	65
			•						155	2x 50 105	40	67,3	-3,4	-9,9	64
								2x 12,5	205	2x 75 155	60	69,7	-3,6	-10,1	67
Ständerachsabstand ≤ 625 mm									255	2x 100 205	80	71,9	-3,5	-9,9	69
1 \$ 625 mm								2x 12,5	155	2x 50 105	40	69,7	-2,9	-8,4	66
					•				205	2x 75 155	60	72,2	-2,7	-8,3	69
	F90								255	2x 100 205	80	74,4	-3,0	-8,6	71
					•			40 F	155	2x 50 105	40	68,0	-2,8	-8,5	65
			•					12,5 + 12,5	205	2x 75 155	60	70,6	-3,0	-9,0	68
								12,3	255	2x 100 205	80	73,2	-3,4	-9,5	70
					•	•		12,5 + 12,5	155	2x 50 105	40	74,0	-4,0	-10,0	71

Bei Mischbeplankungen stets Diamant als Decklage.

Hinweise

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Metallständerwände W11.de.

W11.de Knauf Metallständerwände

W116.de Doppelständerwerk – Einlagig/Zweilagig beplankt

Systemvarianten

Knauf System		Be	planl	kung	je W	/ands	seite		Wand- dicke	Profil Knauf	Schallsch	hutz			
	ISSe		nauf Piano						dicke	CW	Dämm- schicht	Schalldän	nm-Maß		
- O	Feuerwiderstandsklasse	auplatte	Feuerschutzplatte Knauf Piano	Massivbauplatte		ard	Board	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektrum Anpassui		$R_{w,R}$
	Feuerwic	Knauf Bauplatte	Feuerscl	Massivb	Diamant	Silentboard	Drystar Board	d mm	D mm	h mm	mm	dB	C dB	C _{tr}	dB
W116.de Installationswand											Dopp	elständerw	erk – Einla	gig/Zweilagi	g beplankt
Ständerachsabstand ≤ 625 mm					•			18	≥ 141	2x 50 ≥ 105	40	52,5	-2,6	-7,7	50
	-				•			18	≥ 141	2x 50 ≥ 105	2x 40	56,0	-2,4	-6,3	54
	F30	•						2x 12,5	≥ 155	2x 50 ≥ 105	40	54,0	-4,0	-10,0	52 ¹⁾
Ständerachsabstand ≤ 625 mm			•					2x 12,5	≥ 155	2x 50 ≥ 105	40	54	-	-	52
	F90				•			2x 12,5	≥ 155	2x 50 ≥ 105	40	62,5	-2,9	-9,5	60
	F30				•			2x 12,5	≥ 155	2x 50 ≥ 105	2x 40	63,5	-2,3	-7,8	61
							•	2x 12,5	≥ 155	2x 50 ≥ 105	40	54	-	-	52

¹⁾ Gemessen mit einem Plattengewicht von ca. 9 kg/m².

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweise L 037-01.15, L 039-09.14

Hinweise

Detailblatt Knauf Metallständerwände W11.de.

W112C.de Cleaneo Akustik-Wand

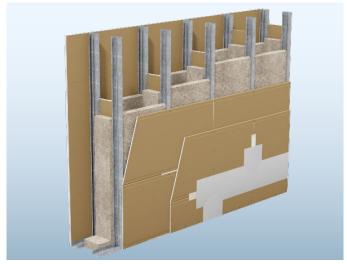
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung (Hybridkonstruktion bestehend aus Diamant Beplankung im stoßgefährdeten Bereich und mit Cleaneo Classic im Absorber-Bereich)
- Mit Dämmstoffeinlage für Schallschutz
- Gesamtdicke 132.5 mm
- Feuerwiderstand bis F30
- Bewertetes Luftschalldämm-Maß R_w: 50,6 bis 61,3 dB
- Wandhöhe bis 4,00 m

Systemvarianten

oystem variantem														
Knauf System		-	olank	_	\A/-		Wand-	Profil	Schallschutz					Flächen-
	dsklasse		ndse	ite 1	vva	ndseite 2	dicke	Knauf	Dämmschicht	Schalle	dämm-M	aß		anteil
Φ Ω 2	Feuerwiderstandsklasse	Cleaneo Classic	±	Mindest- Dicke	+	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektre Anpass wert		$R_{w,R}$	Cleaneo Classic 12/25 Q
1 1	Feuerw	Cleaned	Diamant	d mm	Diamant	d mm	D mm	h mm	mm	dB	C dB	C _{tr} dB	dB	%
W112C.de Cleaneo Akustik-War	nd									Einfa	chstände	erwerk –	Zweilagi	g beplankt
Gelochter Bereich														
Ständerachsabstand ≤ 625 mm								CW 75		61,3	-3,0	-7,1	59	0
Wandseite 1		•		12,5	•	2x 15		Hut- profil 98/15	60 mm ¹⁾ Wandhohl-	56,7	-2,4	-7,4	54	20
Wandseite 2									raum					
Ungelochter Bereich	F30						132,5		+ 20 mm ²⁾	55,2	-2,3	-7,5	53	33
Ständerachsabstand ≤ 625 mm Wandseite 1			•	15 +	•	2x 15		CW 75	Hutprofilhohl- raum	53,8	-2,3	-7,5	51	50
Wandseite 2				12,5						50,6	-4,8	-7,9	48	100

- Dämmschicht G (Mineralwolle-Dämmschicht nach DIN EN 13162, Baustoffklasse A), längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 5 kPa · s/m², Füllgrad Dämmstoff 80 %; z. B. Knauf Insulation Trennwand-Dämmplatte TI 140 T
- 2) Dämmschicht **G** (Mineralwolle-Dämmschicht nach DIN EN 13162, Baustoffklasse A), längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 10 kPa⋅s/m²; z. B. Knauf Insulation Trennwand-Dämmplatte TP 120 A
- Die gelochte Fläche der Absorbertrennwand kann mit allen gängigen Lochbildern ohne negativen Einfluss auf das Schalldämm-Maß ausgeführt werden, da die geprüfte Wand mit dem in Hinblick auf die Schalldämmung ungünstigsten Lochbild (12/25 Q, Lochflächenanteil 23 %) gemessen wurde.

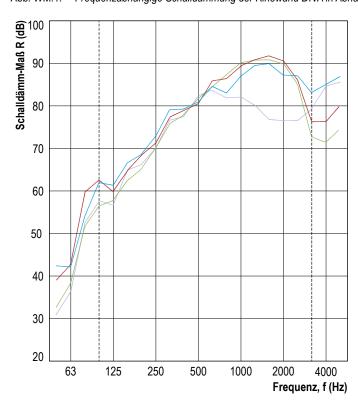
Hinweise auf Seite 6 beachten.


Weitere Angaben zu Planung und Ausführung siehe
Broschüre Knauf Cleaneo Akustik-Wandsysteme AK04.de.

W145.de Knauf Schallschutzwände

W145.de Knauf DIVA Schallschutzwand

Systemübersicht



Z. B. W145.de, 2x 12,5 mm Silentboard

- Schallschutz-Spezialwand
- Doppelständerwerk MW 100, ausgesteift
- Zweilagige oder dreilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 75 bis 83,2 dB
- Gesamtdicke 450 bis 500 mm
- Wandhöhe bis 12,00 m
- Feuerwiderstand bis F90

Messkurvenvergleich

Abb. WM.1: Frequenzabhängige Schalldämmung der Kinowand DIVA in Abhängigkeit von der Beplankung

Unterkonstruktion

400 mm Hohlraum zwischen den Beplankungen. 200 mm lichter Abstand zwischen den beiden Profilreihen. Pro Profilreihe je 1x 80 mm Mineralwolledämmschicht. 2x Profil MW 100; $a \le 625$ mm.

1x 12,5 mm Silentboard + 1x 25 mm Massivbauplatte + 1x 12,5 mm Silentboard

---- 3x 12,5 mm Silentboard

----- 2x 12,5 mm Silentboard

1x 25 mm Massivbauplatte + 1x 12,5 mm Silentboard

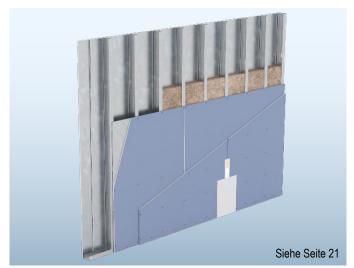
Systemvarianten

Knauf System			•			Wand- dicke	Profil Knauf	Schallscl	hutz				
	asse						MW	Dämm- schicht	Reso- nanzfre- quenz	Schalldär	mm-Maß		
	Feuerwiderstandsklasse	Massivbauplatte	ŧ	oard	Mindest- Dicke		Hohl- raum	Mindest- Dicke	quonz	R _w	Spektrum Anpassur		R _{w,R}
	Feuer	Massiv	Diamant	Silentboard	d mm	D mm	h mm	mm	Hz	dB	C dB	C _{tr} dB	dB
W145.de DIVA Schallschutzwand									Doppels	tänderwerl	k – Zweilag	ig/Dreilagiç	g beplankt
			•	•	12,5 + 12,5	450			22	75	-	_	73
Ständerachsabstand ≤ 625 mm		•		•	25 + 12,5	475			19	78,2	-2,3	-9,4	76
				•	2x 12,5	450			20	79,5	-3,1	-9,6	77
	F90		•	•	2x 12,5 + 12,5	475	2x 100 400	≥2x 80	17	80	-	-	78
 Zusätzlicher Dämmstoff 80 mm hinter Plattenstreifen Zusätzlicher Dämmstoff 80 mm 				•	3x 12,5	475			16	81,9	-2,8	-7,2	79
auf Fußboden zwischen UW-Profilen		•		•	12,5 + 25 + 12,5	500			16	83,2	-2,6	-7,2	81

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen. Bei Mischbeplankungen stets Diamant als Decklage.

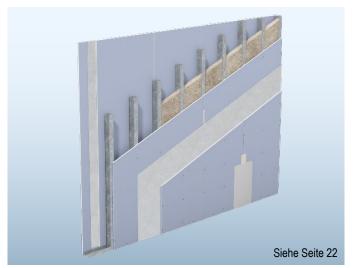
Schallschutz-Nachweis L 034-04.14 Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe
Detailblatt Knauf DIVA Schallschutzwände W145.de.


Systemübersicht

KNAUF

W131.de Brandwand



Z. B. W131.de, 2x 15 mm Fireboard + Stahlblecheinlage

Z. B. W131.de, 2x 12,9 mm Diamant Steel GKFI

W135.de Metallständerwand El 60-M

Z. B. W135.de, 2x 12,5 mm Diamant + Stahlblecheinlage

- Brandwand EI 90-M
- Einfachständerwerk mit CW-Profilen
- Zweilagige oder dreilagige Gipsplattenbeplankung
- Einfache Stahlblecheinlage beidseitig oder Beplankung mit Diamant Steel GKFI (kaschiert mit Stahlblech)
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 54 bis ≥ 68 dB
- Gesamtdicke 102 bis 176 mm
- Wandhöhe bis 9.00 m

- Knauf Metallständerwand EI 60-M
 Hochfeuerhemmende Trennwand mit zusätzlicher mechanischer Beanspruchung
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Einfache Stahlblecheinlage beidseitig
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: ≥ 54 bis 68 dB
- Gesamtdicke 101 bis 151 mm
- Wandhöhe bis 7,00 m

Systemvarianten													Ma	ße in mm		
Knauf System	seite	Wand-	Profil	Schallsch	nutz											
- D	sklasse	Feuerschutzplatte Knauf Piano			E		Mindest-	dicke	Knauf CW Hohl-	Dämm- schicht Mindest-	Schalld	ämm-Ma Spektru	ım-	$R_{w,R}$		
D D	Feuerwiderstandsklasse	serschutzplatt	Massivbauplatte	Diamant	Diamant Steel GKFI	Fireboard	Dicke d	D	raum h	Dicke		Anpass wert	ungs-			
	Fe	Fe	Z	Dia	Dia	Ë	mm	mm	mm	mm	dB	dB	dB	dB		
W131.de Brandwand									Einfa	achständerv	verk – Zw	/eilagig/D	reilagig l	peplankt		
				•			2x 15 +	111	50	40	64	-	-	62		
Ständerachsabstand							Stahlblecheinlage	136	75	60	66	-	-	64		
≤ 312,5 ≤ 312,5	EI 90-M						1x 0,5 mm	161	100	80	68	-	-	66		
						•	2x 15	111	50	40	54	-	-	52		
							+ Stahlblecheinlage	136	75	60	56	-	-	54		
							1x 0,5 mm	161	100	80	57	-	-	55		
Ständerachsabstand ≤ 312,5 ≤ 312,5							2x 12,5 + 0,4 mm	102	50	40	-	_	-	-		
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	EI 90-M				•		Stahlblech- kaschierung	127	75	60	63,2	-3,0	-8,2	61		
								152	100	80	63	-	-	61		
Ständerachsabstand ≤ 312,5 ≤ 312,5			•				20	116	50	40	57	-5	-12	55		
× 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1	EI 90-M	•					12,5	141	75	60	57	-	-	55		
							Stahlblecheinlage 1x 0,5 mm	166	100	80	57	-	-	55		
		•					3x 12,5	126	50	40	≥ 61	-	-	≥ 59		
							+ Stahlblecheinlage	151	75	60	≥ 61	-	-	≥ 59		
Ctändorochashatand							1x 0,5 mm	176	100	80	≥ 64	-	-	≥ 62		
Ständerachsabstand ≤ 312,5 ≤ 312,5		90-M		•			3x 12,5	126	50	40	≥ 64	-	-	≥ 62		
	EI 90-M					+ Stahlblecheinlage	151	75	60	≥ 66	-	-	≥ 64			
<u> </u>						1x 0,5 mm	176	100	80	≥ 68	-	-	≥ 66			
								•	3x 12,5	126	50	40	≥ 61	-	-	≥ 59
							+ Stahlblecheinlage	151	75	60	≥ 61	-	-	≥ 59		
							1x 0,5 mm	176	100	80	≥ 64	-	-	≥ 62		

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Stahlblech gemäß DIN EN 10130 und DIN EN 10152, als Platten oder Rollenware, verzinkt, Stahlblechgüte DC01+ZE, Nennblechdicke ≥ 0,5 mm.

Schallschutz-Nachweis L 015-04.14

Hinweise auf Seite 6 beachten. Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Brandwände W13.de.

W135.de Metallständerwand El 60-M

Systemvarianten Maße in mm

Knauf System		Вер	Beplankung je Wandseite					Wand- dicke	Profil Knauf					
	asse	nauf Piano						uicke	CW	Dämm- schicht	Schalld	ämm-Maí	3	
D	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Massivbauplatte	.	Diamant Steel GKFI	rd	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektru Anpassi	m- ungswert	$R_{w,R}$
	nerw	nerso	SSiv	Diamant	aman	Fireboard	d	D	h			С	C_{tr}	
	å.	ъ.	Ĕ	Ö	Ö	Ē	mm	mm	mm	mm	dB	dB	dB	dB
W135.de Metallständerwand El	60-M							Ein	fachstände	erwerk – Zw	eilagig b	eplankt +	Stahlblech	neinlage
		•					2x 12,5	101	50	40	≥ 56	-	-	≥ 54
Ctändoroohoohotond	EI 60 ¹⁾						+ Stahlblecheinlage	126	75	60	≥ 57	-	-	≥ 55
Ständerachsabstand ≤ 312,5 ≤ 312,5							1x 0,5 mm	151	100	80	≥ 59	-	-	≥ 57
				•			2x 12,5	101	50	40	64,6	-5,1	-12,2	62
	EI 60 ¹⁾						+ Stahlblecheinlage	126	75	60	66	-	-	64
							1x 0,5 mm	151	100	80	68,2	-2,8	-8,7	66

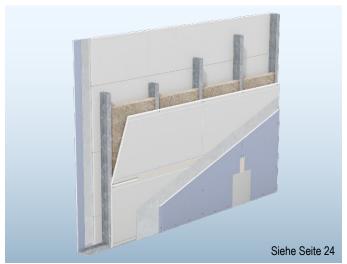
¹⁾ Zusätzliche mechanische Beanspruchung nachgewiesen (-M).

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Stahlblech gemäß DIN EN 10130 und DIN EN 10152, als Platten oder Rollenware, verzinkt, Stahlblechgüte DC01+ZE, Nennblechdicke ≥ 0,5 mm.

Schallschutz-Nachweis L 035-04.14

Hinweise


Hinweise auf Seite 6 beachten.

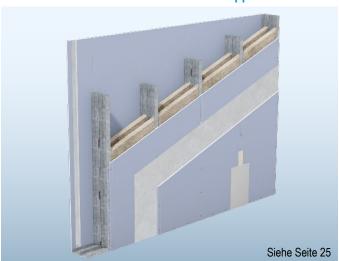
Weitere Angaben zu Planung und Ausführung siehe

Detailblatt Knauf Brandwände W13.de.

W118WK2.de Sicherheitswand WK2 – Einfachständerwerk

Z. B. W118WK2.de, 25 mm Massivbauplatte + 12,5 mm Diamant + 1x Stahlblecheinlage

- Sicherheitswand (einbruch- und ausbruchhemmend)
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Einfache Stahlblecheinlage beidseitig
- Mit Dämmstoffeinlage für Schalldämmung
- Bewertetes Luftschalldämm-Maß R_w: 64,6 bis 70,5 dB
- Gesamtdicke 101 bis 176 mm
- Widerstandsklasse WK2 bzw. N nach VdS
- Klassifizierung als Brandwand möglich
- Wandhöhe bis 10,00 m
- Feuerwiderstand bis F90


W118WK3.de Sicherheitswand WK3 - Einfachständerwerk

Z. B. W118WK3.de, 3x 12,5 mm Diamant + 2x Stahlblecheinlage

- Sicherheitswand (einbruch- und ausbruchhemmend)
- Einfachständerwerk mit CW-Profilen
- Zweilagige oder dreilagige Gipsplattenbeplankung
- Zweifache Stahlblecheinlage beidseitig
- Mit Dämmstoffeinlage für Schalldämmung
- Bewertetes Luftschalldämm-Maß R_w: ≥ 64 bis 71,7 dB
- Gesamtdicke 102 bis 177 mm
- Widerstandsklasse WK3 bzw. A nach VdS
- Klassifizierung als Brandwand möglich
- Wandhöhe bis 12,00 m
- Feuerwiderstand bis F90

W119WK2.de Sicherheitswand WK2 – Doppelständerwerk

W119WK2.de, 2x 12,5 mm Diamant + 1x Stahlblecheinlage

- Sicherheitswand (einbruch- und ausbruchhemmend)
- Doppelständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Einfache Stahlblecheinlage beidseitig
- Mit Dämmstoffeinlage für Schalldämmung
- Bewertetes Luftschalldämm-Maß R_w: 69 bis 74 dB
- Gesamtdicke 156 bis 256 mm
- Widerstandsklasse WK2 bzw. N nach VdS
- Wandhöhe bis 6,00 m
- Feuerwiderstand bis F90

W11WK.de Knauf Sicherheitswände – Einbruchhemmend

W118WK2.de WK2 / W118WK3.de WK3 Einfachständerwerk

Systemvarianten

Knauf System		Bej	plank	kung je Wandseite	Wand- dicke	Profil Knauf	Schallsch	utz			
- C - D	Feuerwiderstandsklasse	Diamant	Massivbauplatte	Mindest-Dicke d mm	D mm	CW Hohl-raum h	Dämm- schicht Mindest- Dicke	Schalldäm ${f R}_{f w}$ dB	m-Maß Spektrum- Anpassung C dB		$R_{w,R}$
W118WK2.de Sicherheitswand	– Einb	ruch	hem	mend		Ei	nfachstände	rwerk – Zwe	eilagig bepla	nkt + Stahlb	lecheinlage
		•		2x 12,5	101	50	40	64,6 ¹⁾	-5,1	-12,2	62
0.7				+ Stahlblecheinlage	126	75	60	66	-	_	64
Ständerachsabstand ≤ 625 mm	F90			1x 0,5 mm	151	100	80	68,2 ¹⁾	-2,8	-8,7	66
	rgu rgu		•	1x 25 +	126	50	40	-	-	-	-
		•		1x 12,5 + Stahlblecheinlage	151	75	60	70,5	-3,3	-9,1	68
				1x 0,5 mm	176	100	80	70	-	-	68
W118WK3.de Sicherheitswand	– Einb	ruch	hem	mend		Einfachständ	lerwerk – Zw	veilagig/Drei	lagig beplan	kt + Stahlble	cheinlagen
Ständerachsabstand ≤ 625 mm		•		2x 12,5	102	50	40	≥ 64	-	_	≥ 62
				+ Stahlblecheinlagen 2x 0,5 mm	127	75	60	≥ 66	-	_	≥ 64
	F90			2A 0,3 IIIII	152	100	80	≥ 68	-	-	≥ 66
Ständerachsabstand ≤ 625 mm		•		3x 12,5	127	50	40	68,7 ¹⁾	-2,9	-9,2	66
				+ Stahlblecheinlagen	152	75	60	69	-	-	67
				2x 0,5 mm	177	100	80	71,7 ¹⁾	-2,3	-8,3	69

¹⁾ Gemessen mit Ständerachsabstand 312,5 mm.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Stahlblech gemäß DIN EN 10130 und DIN EN 10152, als Platten oder Rollenware, verzinkt, Stahlblechgüte DC01+ZE, Nennblechdicke ≥ 0,5 mm.

Schallschutz-Nachweis L 016-04.17

Hinweise

Broschüre Knauf Sicherheitstechnik ST01.de.

W119WK2.de WK2 Doppelständerwerk

Systemvarianten

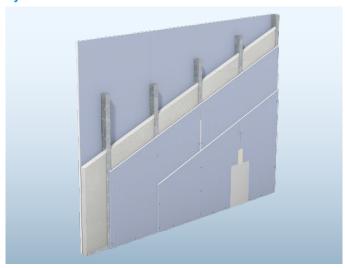
Knauf System		Bej	planl	kung je Wandseite	Wand- dicke	Profil Knauf	Schallschutz				
	asse				uicke	CW	Dämm- schicht	Schalldäm	m-Maß		
□ □ □	Feuerwiderstandsklasse		Massivbauplatte	Mindest-Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektrum- Anpassung		R _{w,R}
	Feuerw	Diamant	Massivk	d mm	D mm	h mm	mm	dB	C dB	C _{tr} dB	dB
W119WK2.de Sicherheitswand	– Einb	ruch	hem	mend		D	oppelstände	erwerk – Zwe	ilagig bepla	nkt + Stahlb	lecheinlage
Ständerachsabstand					156	2x 50 105	2x 40	69	-	-	66
≤ 625 mm				2x 12,5 + Stahlblecheinlage 1x 0,5 mm	206	2x 75 155	2x 60	72	-	-	69
				.,.	256	2x 100 205	2x 80	74	-	-	71

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Stahlblech gemäß DIN EN 10130 und DIN EN 10152, als Platten oder Rollenware, verzinkt, Stahlblechgüte DC01+ZE, Nennblechdicke ≥ 0,5 mm.

Schallschutz-Nachweis L 016-04.17 Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Broschüre Knauf Sicherheitstechnik ST01.de.


W161.de Knauf FB4 - Durchschusshemmende Wände

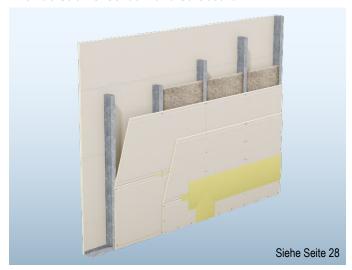
W161.de Knauf FB4 – Durchschusshemmende Wand

Systemübersicht

Z. B. W161.de, 2x 12,5 mm Diamant, ohne Dämmschicht

- Durchschusshemmende Wand
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Einlage von hochverdichteten Gipsfaserplatten Torro im Wandhohlraum
- Ohne/Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 49,7 bis 56,7 dB
- Gesamtdicke 125 bis 150 mm
- Beschussklasse FB4 / Widerstandsklasse FB4 NS
- Wandhöhe bis 5,00 m
- Feuerwiderstand bis F90

Systemvarianten


Knauf System		Bej	olani	kung je Wandseite	Wand- dicke	Profil Knauf	Schallsch	utz			
<u> </u>	Feuerwiderstandsklasse	Diamant	Massivbauplatte	Mindest-Dicke d mm	D mm	Hohl-raum h	Dämm- schicht Mindest- Dicke	Schalldäm $ m R_w$	m-Maß Spektrum- Anpassung C dB		$R_{w,R}$
W161.de FB4 – Durchschusshe	mmen		/and					tänderwerk (
Ständerachsabstand ≤ 625 mm	F90	•		2x 12,5 + im Wandhohlraum Knauf Torro 2x 28 mm	125	75	_	49,7	-2	-7	47
W161.de FB4 – Durchschusshe	mmen	de V	/and		Einfa	chständerwe	erk CW 100	(mit Dämms	chicht) – Zw	eilagig bepla	nkt + Torro
Ständerachsabstand ≤ 625 mm	F90	•		2x 12,5 + im Wandhohlraum Knauf Torro 2x 28 mm	150	100	20	56,7	-4	-11	54

Schallschutz-Nachweis
L 001-07.05

Hinweise	,
----------	---

Z. B. K131.de, 2x 12,5 mm Safeboard

■ Strahlenschutzwand

- Einfachständerwerk mit CW-Profilen
- Einlagige, zweilagige oder dreilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schalldämmung
- Bewertetes Luftschalldämm-Maß R_w: 56,8 bis 71 dB
- Gesamtdicke 75 bis 175 mm
- Wandhöhe bis 9,60 m
- Feuerwiderstand bis F90

K131.de Strahlenschutzwand Safeboard + Diamant

Z. B. K131.de, 2x 12,5 mm Safeboard + 12,5 mm Diamant

- Strahlenschutzwand
- Einfachständerwerk mit CW-Profilen
- Zweilagige oder dreilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schalldämmung
- Bewertetes Luftschalldämm-Maß R_w: 66,0 bis 71,6 dB
- Gesamtdicke 100 bis 175 mm
- Wandhöhe bis 9,60 m
- Feuerwiderstand bis F90

K131.de Knauf Strahlenschutzwände Safeboard

K131.de Einfachständerwerk – Einlagig/Zweilagig/Dreilagig beplankt

Systemvarianten

Knauf System		Be	planl	kung je Wandseite	Wand- dicke	Profil Knauf	Schallsch	utz			
	asse				uicke	CW	Dämm- schicht	Schalldäm	m-Maß		
	Feuerwiderstandsklasse	Ç		Mindest-Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektrum- Anpassuno		R _{w,R}
	Feuerwic	Safeboard	Diamant	d mm	D mm	h mm	mm	dB	C dB	C _{tr}	dB
K131.de Strahlenschutzwand -	Safeb	oard								Einfachs	tänderwerk
Ständerachsabstand					75	50	40	56,8	-4	-12	54
≤ 625 mm	-	•		12,5	100	75	60	59,7	-3	-9	57
					125	100	80	60,9	-2	-8	58
Ständerachsabstand ≤ 625 mm					100	50	40	67,5	-3	-10	65
\$ 625 HIIII	•	•		2x 12,5	125	75	60	69,6	-3	-10	67
	F90				150	100	80	70,4	-3	-9	68
Ständerachsabstand ≤ 625 mm					125	50	40	71	-	-	69
		•		3x 12,5	150	75	60	71	-	-	69
					175	100	80	71	-	-	69
K131.de Strahlenschutzwand –	- Safeb	oard	+ Di	amant						Einfachs	tänderwerk
Ständerachsabstand ≤ 625 mm		•		12,5	100	50	40	66,0	-4,2	-11,0	64
			•	+ 12,5	125	75	60	67,4	-4,1	-10,6	65
	F90				150	100	80	67,6	-2,8	-8,5	65
Ständerachsabstand ≤ 625 mm		•		2x 12,5	125	50	40	71,3	-3,7	-10,2	69
		•	•	+ 12,5	150	75	60	71,6	-3,6	-9,9	69
					175	100	80	71,3	-2,7	-8,3	69

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen. Bei Mischbeplankungen stets Diamant als Decklage.

Schallschutz-Nachweise
L 018-01.09 (Safeboard)
L 019-01.09 (Safeboard + Diamant)

Hinweise

Metallständerwand-Systeme mit Zementplatten

W38.de Knauf Metallständerwände AQUAPANEL

Systemübersicht

W381.de Metallständerwand AQUAPANEL - Einfachständerwerk - Einlagig beplankt

- Einfachständerwerk mit CW-Profilen C3/C5M
- Einlagige Zementplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: ≥ 43 dB
- Gesamtdicke 75 bis 150 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F30

W382.de Metallständerwand AQUAPANEL – Einfachständerwerk – Zweilagig beplankt

- Zweilagige Zementplattenbeplankung
 - Mit Dämmstoffeinlage für Schallschutz

■ Einfachständerwerk mit CW-Profilen C3/C5M

- Bewertetes Luftschalldämm-Maß R_w: 55,0 bis 60,7 dB
- Gesamtdicke 100 bis 200 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F90

W382.de, 2x 12,5 mm AQUAPANEL Cement Board Indoor

W381.de, 12,5 mm AQUAPANEL Cement Board Indoor

W383.de Metallständerwand AQUAPANEL – Einfachständerwerk – Einlagig mischbeplankt

Z. B. W383.de, 12,5 mm Mischbeplankt AQUAPANEL Cement Board Indoor + Diamant

- Einfachständerwerk mit CW-Profilen C3/C5M
- Einlagig mischbeplankt
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 44,9 dB
- Gesamtdicke 75 bis 150 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F30

W384.de Metallständerwand AQUAPANEL – Einfachständerwerk – Zweilagig mischbeplankt

Z. B. W384.de, 2x 12,5 mm Mischbeplankt AQUAPANEL Cement Board Indoor + Diamant

- Einfachständerwerk mit CW-Profilen C3/C5M
- Zweilagig mischbeplankt
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 54,2 bis 57,8 dB
- Gesamtdicke 100 bis 200 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F90

W385.de Metallständerwand AQUAPANEL – Doppelständerwerk – Zweilagig beplankt

Z. B. W385.de, 2x 12,5 mm AQUAPANEL Cement Board Indoor

- Doppelständerwerk mit CW-Profilen C3/C5M
- Einlagige oder zweilagige Zementplatten- oder Mischbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 64,2 bis 66,4 dB
- Gesamtdicke 155 bis 255 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F90

W386.de Metallständerwand AQUAPANEL – Doppelständerwerk – Einlagig/Zweilagig beplankt

Z. B. W386.de, 12,5 mm AQUAPANEL Cement Board Indoor

- Doppelständerwerk mit CW-Profilen C3/C5M, ausgesteift
- Einlagige oder zweilagige Zementplatten- oder Mischbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 50 bis 61,4 dB
- Gesamtdicke ≥ 130 mm
- Wandhöhe bis 8,00 m
- Feuerwiderstand bis F90

W38.de Knauf Metallständerwände AQUAPANEL

W381.de/W382.de Einfachständerwerk – Einlagig/Zweilagig beplankt

Systemvarianten

Knauf System		Beplani	kung je Wandseite	Wand- dicke	Profil Knauf CW	Schallschutz						
D C	ands D h		Mindest-Dicke d mm	D mm	C3/C5M Hohlraum h	Dämm- schicht Mindest- Dicke	Anpassungswert C C _{tr}			$\mathbf{R}_{w,R}$ dB		
W381.de Metallständerwand AG		Einfachständerwerk – Einlagig beplar										
Ständerachsabstand ≤ 625 mm	F30			75	50	50	43	-4	-11	41		
		•	12,5	100	75	50	≥ 43	_	-	≥ 41		
				125	100	50	≥ 43	-	-	≥41		
W382.de Metallständerwand AC	QUAPA	NEL					Einfachs	tänderwerk	. – Zweilagi	g beplankt		
Ständerachsabstand ≤ 625 mm	F90			100	50	40	55,0	-3,1	-9,2	53		
		•	2x 12,5	125	75	60	57,2	-2,8	-7,4	55		
				150	100	80	60,7	-3,1	7,3	58		

 $\textit{Kursive Schalld\"{a}mm-Ma\&e sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.}$

Hinweise

Hinweise auf Seite 6 beachten.

W383.de/W384.de Einfachständerwerk – Einlagig/Zweilagig beplankt

Systemvarianten

Knauf System		Beplankung Wandseite 1 Wandseite 2						Wand- dicke	Profil Knauf CW	Schallschutz					
								uiono	C3/C5M	Dämm- schicht	Schalldämm-Maß				
D P D	Feuerwiderstandsklasse	AQUAPANEL Cement Board Indoor	Mindest- Dicke	AQUAPANEL Cement Board Indoor	Feuerschutzplatte Knauf Piano (I) ¹⁾	ıant	Mindest- Dicke		Hohlraum	Mindest- Dicke	R _w		ungswert	R _{w,R}	
	Feue	AQU/	d mm	AQU	Feue	Diamant	d mm	D mm	h mm	mm	dB	C dB	C_{tr} dB	dB	
W383.de Metallständerwand AQ	UAPA	NEL								Ein	fachständ	derwerk –	Einlagig	beplankt	
Ständerachsabstand ≤ 625 mm	F30	•	12,5				12,5	75	50	50	44,9	-3,9	-10,8	42	
					•			100	75	50	≥ 44	_	-	≥ 42	
								125	100	50	≥ 44	-	-	≥ 42	
							12,5	75	50	50	≥ 44	-	-	≥ 42	
		•	12,5			•		100	75	50	≥ 44	-	-	≥ 42	
								125	100	50	≥ 44	-	-	≥ 42	
W384.de Metallständerwand AC	UAPA	NEL								Einfa	chstände	erwerk – Z	weilagig	beplankt	
								100	50	50	54,2	-3,3	-9,9	52	
լStänderachsabstandլ		•	2x 12,5		•		2x 12,5	125	75	50	≥ 54	-	-	≥ 52	
≤ 625 mm	F00							150	100	50	≥ 54	-	-	≥ 52	
	F90	•						100	50	-	-	-	-	-	
			2x 12,5			•	2x 12,5	125	75	60	57,8	-2,4	-6,6	55	
								150	100	80	≥ 57	_	-	≥ 55	

¹⁾ Feuerschutzplatte Knauf Piano GKF/GKFI (Gipskern spezialimprägniert) möglich. Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Hinweise

Hinweise auf Seite 6 beachten.

W38.de Knauf Metallständerwände AQUAPANEL

W385.de Doppelständerwerk – Zweilagig beplankt

Systemvarianten

Knauf System			olankung			., ^		Wand-	Profil	Schallschutz					
			ndseite 1		ndse	ite 2		dicke	Knauf CW C3/C5M	Dämm- schicht	Schalldämm-Maß				
р Ч О	Feuerwiderstandsklasse	AQUAPANEL Cement Board Indoor	Mindest- Dicke	AQUAPANEL Cement Board Indoor	Feuerschutzplatte Knauf Piano (I) ¹⁾	Diamant	Mindest- Dicke	D	Hohlraum	Mindest- Dicke	R _w	Spektru Anpassi C	m- ungswert C _{tr}	R _{w,R}	
	Fe	A	mm	A	Te .	Ö	mm	mm	mm	mm	dB	dB	dB	dB	
W385.de Metallständerwand AC	QUAPA	NEL						Doppelständerwerk – Zweilagig beplankt							
Ständerachsabstand ≤ 625 mm							2x 12,5	155	2x 50 105	2x 40	64,2	-3,1	-6,8	62	
		•	2x 12,5	•				205	2x 75 155	2x 60	≥66	-	-	≥ 64	
								255	2x 100 205	2x 80	≥66	-	-	≥ 64	
Ständerachsabstand ≤ 625 mm	F90							155	2x 50 105	2x 40	66,4	-3,3	-7,2	64	
		•	2x 12,5			•	2x 12,5	205	2x 75 155	2x 60	≥66	_	_	≥ 64	
								255	2x 100 205	2x 80	≥ 66	_	_	≥ 64	

¹⁾ Feuerschutzplatte Knauf Piano GKF/GKFI (Gipskern spezialimprägniert) möglich. Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Hinweise

Hinweise auf Seite 6 beachten.

W386.de Doppelständerwerk – Einlagig/Zweilagig beplankt

Systemvarianten

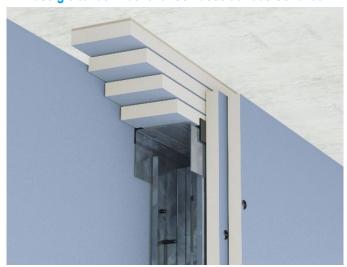
Knauf System		Bep	olankung					Wand-	Profil	Schallschutz					
		Wandseite 1			Wandseite 2				Knauf CW						
<u>р</u>	andsklasse		Mindest- Dicke	AQUAPANEL Cement Board Indoor	Feuerschutzplatte Knauf Piano (I) ¹⁾		Mindest- Dicke		C3/C5M Hohlraum	Dämm- schicht Mindest- Dicke	Schalldämm-Maß R _w Spektrum- Anpassungswert		R _{w,R}		
	Feuerwiderstandsklasse	AQUAPANEI	d mm	AQUAPANEI	Feuerschutz	Diamant	d mm	D mm	h mm	mm	dB	C dB	C _{tr} dB	dB	
W386.de Installationswand AQ	JAPAN	IEL							[Ooppelständ	erwerk –	Einlagig/Z	Zweilagig l	peplankt	
Ständerachsabstand ≤ 625 mm									2x 50 ≥ 105	50	50	-4	-10	48	
			•	12,5	•			12,5	≥ 230	2x 75 ≥ 155	50	≥ 50	-	-	≥ 48
										2x 100 ≥ 205	50	≥ 50	-	-	≥ 48
Ständerachsabstand ≤ 625 mm	F30		12,5		•		12,5	≥230	2x 50 ≥ 105	50	53,5	-3,2	-9,3	51	
		•							2x 75 ≥ 155	50	≥ 53	-	-	≥ 51	
									2x 100 ≥ 205	50	≥ 53	-	-	≥ 51	
							12,5	≥ 230	2x 50 ≥ 105	50	≥ 53	-	-	≥ 51	
		•	12,5			•			2x 75 ≥ 155	50	≥ 53	-	-	≥ 51	
									2x 100 ≥ 205	50	≥ 53	-	-	≥ 51	
Ständerachsabstand ≤ 625 mm							2x 12,5	≥ 255	2x 50 ≥ 105	50	57	-2	-8	55	
			2x 12,5	•					2x 75 ≥ 155	50	≥ 57	-	-	≥ 55	
									2x 100 ≥ 205	50	≥ 57	-	-	≥ 55	
									2x 50 ≥ 105	50	61,4	-2,6	-8,2	59	
Ständerachsabstand ≤ 625 mm	F90	•	2x 12,5		•		2x 12,5	≥255	2x 75 ≥ 155	50	≥ 61	-	-	≥ 59	
									2x 100 ≥ 205	50	≥ 61	-	-	≥ 59	
						•	2x 12,5		2x 50 ≥ 105	50	≥ 61	-	-	≥ 59	
		•	2x 12,5					≥ 255	2x 75 ≥ 155	50	≥ 61	-	-	≥ 59	
									2x 100 ≥ 205	50	≥ 61	-	-	≥ 59	

¹⁾ Feuerschutzplatte Knauf Piano GKF/GKFI (Gipskern spezialimprägniert) möglich.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweis L 048-10.17 Hinweise

Hinweise auf Seite 6 beachten.


Gleitende Deckenanschlüsse

Metallständerwände mit gleitenden Deckenanschlüssen

Einfluss gleitender Deckenanschlüsse auf das Schalldämm-Maß

Je nach Schalldämm-Maß der Grundwand haben gleitende Deckenanschlüsse unterschiedlich hohe Einflüsse auf das resultierende Schalldämm-Maß. Unabhängig von dem Schalldämm-Maß der Grundwand ist bei der Ausführung von gleitenden Deckenanschlüssen immer auf eine fachgerechte Ausführung (entsprechend Detailblatt W11.de) zu achten. Undichtigkeiten zwischen den Plattenstreifen und der Rohdecke, an den Stößen zwischen den Plattenstreifen sowie der Beplankungslagen und dem Plattenstreifen mindern das zu erreichende Schalldämm-Maß erheblich.

Gleitender Deckenanschluss	Schalldämm-Maß der Grundwand										
Einfachständerwerk	R _w ≤56 dB	$56 < R_w \le 62 \text{ dB}$	$62 < R_w \le 68 \text{ dB}$								
	-1 dB	-2 dB	-3 dB								
	Kein negativer Einfluss	Kein negativer Einfluss	Kein negativer Einfluss								
Doppelständerwerk		Pauschal									
	-4 dB										

Schallschutz-Nachweise	
L 051-06.17	

		Hinweise auf Seite 6 beachten.
F	linweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Metallständerwände W11.de

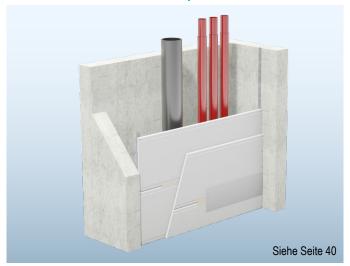
Schachtwand-Systeme mit Gipsplatten

Direktschalldämmung (bewertetes Bauschalldämm-Maß R_w)

Schachtwände sind spezielle Vorsatzschalen, die i. d. R. geschossübergreifende Versorgungsschächte unter brandschutz- und schallschutztechnischen Gesichtspunkten schließen. In bauakustischer Sicht haben Schachtwände die Aufgabe, Schallemissionen aus dem Schacht in die Räume und andererseits die Übertragung von Raum zu Raum über den Schacht weitgehend zu verhindern.

Je nach Geometrie und Ausführung der Schächte sind verschiedenste Konstruktionsvarianten möglich.

Die Konstruktionspalette mit den wichtigsten Anwendungskriterien sowie die technischen und bauphysikalischen Daten der Konstruktionen mit den bewerteten Schalldämm-Werten R_w sind in den Tabellen im nachfolgenden Kapitel zusammengefasst. Mit der speziellen Knauf Konstruktion W635.de ist durch konsequente Umsetzung der Zweischaligkeit ein für diese Konstruktionen sehr gutes bewertetes Schalldämm-Maß von bis zu 54 dB möglich. Der Einbau von geprüften Revisionsöffnungen, ein dichter Einbau und ohne Schwächung einer ggf. vorhandenen Dämmschicht vorausgesetzt, ist zulässig und führt i. d. R. nicht zu einer Verschlechterung der Schalldämmung.


W62.de Knauf Schachtwände

Systemübersicht

KNAUF

W628A.de Schachtwand – Freispannend

W628A.de, 2x 25 mm Massivbauplatte

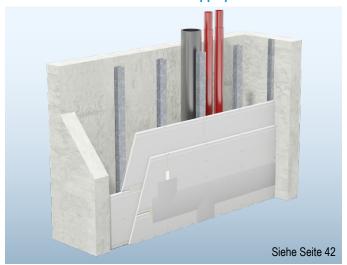
- Randprofile CW/UW/Winkelprofil
- Freispannend über Schachtbreite
- Zweilagige Gipsplattenbeplankung
- Ohne Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 36 dB
- Gesamtdicke 50 mm
- Wandhöhe bis 15,00 m (bis 5,00 m bei 2- oder 3-seitiger Ausführung)
- Feuerwiderstand bis F90

W630.de Schachtwand mit Riegelwerk

Z. B. W630.de, 2x 12,5 mm Diamant

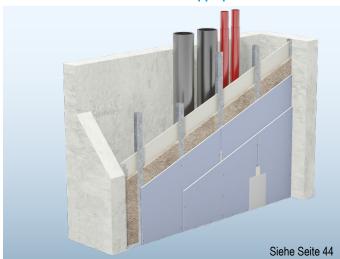
- Riegelwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Ohne/Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 32 bis 44 dB
- Gesamtdicke 75 bis 140 mm
- Wandhöhe bis 15,00 m
- Feuerwiderstand bis F90

W628B.de Schachtwand mit CW-Einfachprofil-Ständerwerk



Z. B. W628.de Typ B, 2x 12,5 mm Diamant

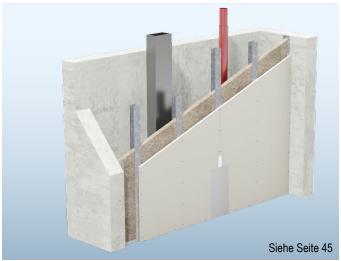
- Einfachständerwerk mit CW-Profilen
- Zweilagige Gipsplattenbeplankung
- Ohne/Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 32 bis 46,8 dB
- Gesamtdicke 75 bis 150 mm
- Wandhöhe bis 7,00 m
- Feuerwiderstand bis F90



Z. B. W629.de, 2x 25 mm Massivbauplatte

■ Einfachständerwerk mit CW-Doppelprofilen

- Zweilagige Gipsplattenbeplankung
- Ohne/Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 32 bis 46,8 dB
- Gesamtdicke 75 bis 150 mm
- Wandhöhe bis 7.00 m
- Feuerwiderstand bis F90


W635.de Schachtwand mit UW-Doppelprofil-Ständerwerk

- Einfachständerwerk mit UW-Doppelprofilen
- Zweilagige Gipsplattenbeplankung
- Eingestellte Plattenlage
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 49 bis 54 dB
- Gesamtdicke 80 bis 130 mm
- Wandhöhe bis 5,00 m
- Feuerwiderstand bis F90

Z. B. W635.de, 2x 12,5 mm Diamant

K251.de Fireboard-Schachtwand mit CW-Doppelprofil-Ständerwerk

Z. B. K251.de, 30 mm Fireboard – Wandhöhe ≤ 3,00 m

- Einfachständerwerk mit CW-Doppelprofilen
- Einlagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 40 bis 41,8 dB
- Gesamtdicke 80 bis 142,5 mm
- Wandhöhe bis 5,00 m
- Feuerwiderstand bis F90

W62.de Knauf Schachtwände

W628A.de Ohne Unterkonstruktion freispannend – Zweilagig beplankt

Systemvarianten

Knauf System		Bej	plankı	ung					Wand-	Profil	Schallschutz					
	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Fireboard	Mindest- Dicke d mm	D mm	Hohl-raum h	Dämm- schicht Mindest- Dicke	Schalldär $R_{ m w}$	Spektrun Anpassul C dB		$R_{w,R}$	
W628A.de Schachtwand – Freis	spanne	end						Oł	nne Unterk	onstruktion	n freispannend	d über Sch	achtbreite -	- Zweilagi	g beplankt	
Schachtbreite ≤ 2000 mm	F90			•				2x 25	50	_	-	36	-1	-1	33	

Schallschutz-Nachweis L 020-08.09

Hinweise

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe

W630.de Riegelwerk mit CW-Profilen – Zweilagig beplankt

Systemvarianten

Knauf System		Bej	plank	cung					Wand-	Profil	Schallsch	nutz			
P	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Fireboard	Mindest- Dicke	dicke	Knauf CW Hohl- raum	Dämm- schicht Mindest- Dicke	Schalldä	Spektrui Anpassi C	m- ungswert C _{tr}	$R_{w,R}$
				Mas	Dia	Sile	Fire	mm	mm	mm	mm	dB	dB	dB	dB
W630.de Schachtwand – Ohne	Dämm	schic	ht								Riegelwer	k mit CW-	Profilen –	Zweilagig	beplankt
Schachtbreite	F30	•						2x 12,5	75 100	50 75		32	-1	-2	30
	гои				•			2x 12,5	125	100		34	-1	-2	31
	F90			•				2x 20	90 115 140	50 75 100	_	35	-1	-1	33
W630.de Schachtwand – 40 mm	n Dämr	nschi	icht								Riegelwer	k mit CW-	Profilen –	Zweilagig	beplankt
Schachtbreite	F30	•						2x 12,5	75 100	50 75		38	-1	-5	36
					•			2x 12,5	125	100	40	39	-1	-5	37
	F90			•				2x 20	90 115 140	50 75 100		43	-2	-5	41
W630.de Schachtwand – 60 mm	n Dämr	nschi	icht								Riegelwer	k mit CW-	Profilen –	Zweilagig	beplankt
Schachtbreite		•						2x 12,5	75	50		≥ 38	-	-	≥ 36
	F30				•			2x 12,5	100 125	75 100	- 60	≥ 39	-	-	≥ 37
	F90			•				2x 20	90 115 140	50 75 100	00	44	-2	-6	42
W630.de Schachtwand - 80 mm	n Dämr	nschi	icht								Riegelwer	k mit CW-	Profilen –	Zweilagig	beplankt
Schachtbreite	F30	•						2x 12,5	75 100	50 75		≥ 38	-	-	≥36
	-		• 2x 12,5 125 100 80	80	43	-2	-7	40							
	F90			•				2x 20	90 115 140	50 75 100	00	≥ 44	-	-	≥ 42

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweis L 020-08.09

	Hinweise auf Seite 6 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Schachtwände W62.de.

W62.de Knauf Schachtwände

W628B.de/W629.de Einfachständerwerk mit CW-Einfach-/ -Doppelprofilen

Systemvarianten

Knauf System		Bej	olank	kung					Wand-	Profil	Schallsch	nutz			
7/7	asse	nauf Piano	latte						dicke	Knauf CW	Dämm- schicht	Schalldä	imm-Maß		
	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	ŧ	Silentboard	ard	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektru Anpass	m- ungswert	R _{w,R}
	enen	euers	nauf	lassiv	Diamant	ilent	Fireboard	d	D	h		15	С	C _{tr}	15
WOOD I O I III				Σ	Ω	S	正	mm	mm	mm	mm	dB	dB	dB	dB
W628B.de Schachtwand – ohne										nfachstände			•		
W629.de Schachtwand – ohne D	Jamms		ıτ					0 40 E		infachstände	rwerk mit C		•		
	- 20	•						2x 12,5	75	50		32	-1	-2	30
Ctändaraahaahatand	F30				•			2x 12,5	100 125	75 100		34	-1	-2	31
Ständerachsabstand ≤ 625 mm						•		2x 12,5				38,4	-1,4	-3,8	36
	F60		•					2x 15	80 105	50 75		32	-	-	30
L. L.	1 00				•			2x 15	130	100		32	-	-	30
W628B.de				•				2x 20	90 115 140	50 75 100	-	35	-1	-1	33
≤ 625 mm	F90			•				2x 25	100 125 150	50 75 100		36	-1	-1	33
W629.de							•	2x 20	90 115 140	50 75 100		35	-1	-1	33
W628B.de Schachtwand – 40 m	m Dän	nmsc	hicht						Ei	nfachstände	rwerk mit C'	W-Einfach	profilen –	- Zweilagig	beplankt
W629.de Schachtwand – 40 mm	Dämr	nschi	icht						E	infachstände	rwerk mit C	W-Doppe	lprofilen –	- Zweilagig	beplankt
		•						2x 12,5	75	50		38	-1	-5	36
	F30				•			2x 12,5	100	75		39	-1	-5	37
₋ Ständerachsabstand						•		2x 12,5	125	100		42,9	-1,7	-5,9	40
≤ 625 mm			•					2x 15	80	50		38	_	_	36
··· \	F60				•			2x 15	105 130	75 100		38	_	_	36
W628B.de				•				2x 20	90 115 140	50 75 100	40	43	-2	-5	41
≤ 625 mm	F90			•				2x 25	100 125 150	50 75 100		43	-1	-4	41
W629.de							•	2x 20	90 115 140	50 75 100		43	-2	-5	41

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweis
L 020-08.09

	Hinweise auf Seite 6 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Schachtwände W62.de.

W628B.de/W629.de Einfachständerwerk mit CW-Einfach-/ -Doppelprofilen

Systemvarianten														(Forts	setzung)
Knauf System		Be	planl	kung					Wand-	Profil	Schallsch	nutz			
7 7	asse	nauf Piano	latte						dicke	Knauf CW	Dämm- schicht	Schallda	ämm-Maß	S	
5	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	ant	Silentboard	oard	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektru Anpass	ungswert	R _{w,R}
	-ene	-euer	Knau	Massi	Diamant	Silent	Fireboard	d mm	D mm	h mm	mm	dB	C dB	C _{tr} dB	dB
W628B.de Schachtwand – 60 m						U,	_	111111		nfachstände					
W629.de Schachtwand – 60 mm										nfachstände			-		
		•						2x 12,5	75	50		≥ 38	_	_	≥ 36
	F30				•			2x 12,5	100	75		≥ 39	_	-	≥ 37
Ständerachsabstand						•		2x 12,5	125	100		44,8	-1,8	-6,2	42
≤ 625 mm	F60		•					2x 15	80 105	50 75		38	-	-	36
	1 00				•			2x 15	130	100		38	-	-	36
W628B.de				•				2x 20	90 115 140	50 75 100	60	44	-2	-6	42
≤ 625 mm	F90			•				2x 25	100 125 150	50 75 100		44	-1	-5	42
W629.de							•	2x 20	90 115 140	50 75 100		44	-2	-6	42
W628B.de Schachtwand – 80 m	ım Dän	nmsc	hicht	t					Eiı	nfachstände	rwerk mit C	W-Einfacl	nprofilen -	- Zweilagig	beplankt
W629.de Schachtwand - 80 mm	n Dämr	nschi	icht						Ei	nfachstände	rwerk mit C	W-Doppe	lprofilen -	- Zweilagig	beplankt
		•						2x 12,5	75	50		≥ 38	-	-	≥ 36
₁ Ständerachsabstand ₁	F30				•			2x 12,5	100	75		43	-2	-7	40
≤ 625 mm						•		2x 12,5	125	100		46,8	-2,2	-7,0	44
	F60		•					2x 15	80 105	50 75		≥ 38	-	-	≥ 36
					•			2x 15	130	100		≥ 38	-	-	≥ 36
W628B.de				•				2x 20	90 115 140	50 75 100	80	≥ 44	-	-	≥ 42
≤ 625 mm	F90			•				2x 25	100 125 150	50 75 100		≥ 44	_	-	≥42
W629.de							•	2x 20	90 115 140	50 75 100		≥ 44	_	-	≥42

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweis L 020-08.09 Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Schachtwände W62.de.

W62.de Knauf Schachtwände

W635.de Einfachständerwerk mit UW-Doppelprofilen

Systemvarianten

Knauf System		Bej	olank	ung					Wand-	Profil	Schallsch	nutz			
	dasse	Knauf Piano	zplatte						dicke	Knauf UW	Dämm- schicht	Schalldä	mm-Maß		
	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	ant	Silentboard	Fireboard	Mindest- Dicke		Hohl- raum	Mindest- Dicke	R _w	Spektrun Anpassu	ngswert	R _{w,R}
	Feue	Feue	Knaı	Mass	Diamant	Silen	Firek	d mm	D mm	h mm	mm	dB	C dB	C _{tr} dB	dB
W635.de Schachtwand – 40 mm	n Dämr	nschi	icht				Ein	fachständerw	erk mit UW	-Doppelpro	ofilen – Zwe	ilagig bepl	ankt + einç	gestellte Pl	attenlage
Ständerachsabstand ≤ 625 mm	F90	•			•			2x 15 + 12,5 Eingestellt	80 105 130	50 75 100	40	49	-4	-11	47
W635.de Schachtwand – 80 mm	n Dämr	nschi	icht				Ein	fachständerw	erk mit UW	-Doppelpro	ofilen – Zwe	ilagig bepl	ankt + eing	gestellte Pl	attenlage
Ständerachsabstand ≤ 625 mm	F90	•			•			2x 15 + 12,5 Eingestellt	130	100	80	54	-2	-7	52

Schallschutz-Nachweis
L 020-08.09

K251.de Einfachständerwerk mit CW-Doppelprofilen – Einlagig beplankt

Systemvarianten

Knauf System		Be	plank	cung					Wand-	Profil	Schallsch	nutz			
	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	auplatte		ard	70	Mindest- Dicke	dicke	Knauf CW Hohl- raum	Dämm- schicht Mindest- Dicke	Schalldä $R_{\rm w}$	mm-Maß Spektrur Anpassu		$R_{w,R}$
	Feuerwic	Feuersch	Knauf Fe	Massivbauplatte	Diamant	Silentboard	Fireboard	d mm	D mm	h mm	mm	dB	C dB	C _{tr}	dB
K251.de Fireboard-Schachtwar	nd – 40	mm	Däm	mscl	nicht					Einfachstä	nderwerk m	it CW-Dop	pelprofiler	– Einlagig	beplankt
Wandhöhe ≤ 3,00 m Ständerachsabstand ≤ 625 mm	F90						•	30	80 105 130	50 75 100	40	40	-1	-5	38
K251.de Fireboard-Schachtwar	nd – 60	mm	Däm	mscl	nicht					Einfachstä	nderwerk m	it CW-Dop	pelprofiler	ı – Einlagig	beplankt
Wandhöhe ≤ 3,00 m Ständerachsabstand ≤ 625 mm	F90						•	30	80 105 130	50 75 100	60	41,8	-2	-6	39
K251.de Fireboard-Schachtwar	nd – 40	mm	Däm	mscl	nicht					Einfachstä	nderwerk m	it CW-Dop	pelprofiler	– Einlagig	beplankt
Wandhöhe > 3,00 m bis 5,00 m Ständerachsabstand ≤ 625 mm	F90						•	30 + 12,5 Profilab- abdeckung	92,5 117,5 142,5	50 75 100	40	40	-1	-5	38
K251.de Fireboard-Schachtwar	nd – 60	mm	Däm	mscl	nicht					Einfachstä	nderwerk m	it CW-Dop	pelprofiler	– Einlagig	beplankt
Wandhöhe > 3,00 m bis 5,00 m Ständerachsabstand ≤ 625 mm	F90						•	30 + 12,5 Profilab- abdeckung	92,5 117,5 142,5	50 75 100	60	41	-2	-6	39

Schallschutz-Nachweis	
L 020-08.09	

	Hinweise auf Seite 6 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe
	Detailblatt Knauf Schachtwände W62.de.

Massivwände mit Vorsatzschalen-Systemen mit Gipsplatten

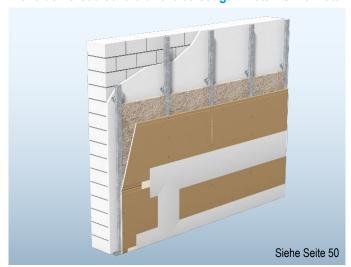
Schallschutzverbesserung durch freistehende und direkt befestigte Vorsatzschalen

Besonders wirksam zur Schallschutzverbesserung einschaliger Massivwände und ähnlichen Wänden (z. B. Fachwerkwände) sind biegeweiche Vorsatzschalen.

Dies betrifft sowohl das Verbesserungsmaß für die Direktübertragung (ΔR) sowie das Verbesserungsmaß für die Flankenübertragung (ΔR_{ij}) bei Anwendung vor flankierenden Wänden.

Die Vorsatzschale bildet mit der Massivwand ein Feder-Masse-System. Das Verbesserungsmaß ist abhängig von der konstruktiven Ausbildung der Vorsatzschale.

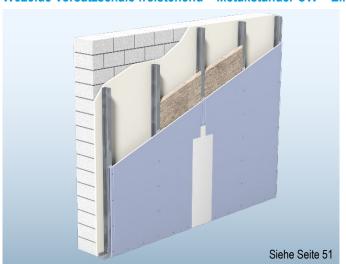
Optimale Ergebnisse werden erzielt unter Einhaltung folgender Grundsätze:


- Max. bauakustische Entkoppelung der Vorsatzschale von der Massivwand (freistehend oder punktuelle federnde Kopplung)
- Beplankung mit biegeweicher Platte
- Abstimmung der Hohlraumtiefe und/oder Plattenmasse auf niedrige Resonanzfrequenzen
- Dämpfung des Hohlraumes durch offenporigen Dämmstoff

Ideal werden diese Bedingungen mit den Knauf-Systemen "freistehende Vorsatzschale" mit Metall-Unterkonstruktion und "direkt befestigte Vorsatzschale" mit Metall-Unterkonstruktion mit punktweise elastischer Koppelung an die Massivwand umgesetzt.

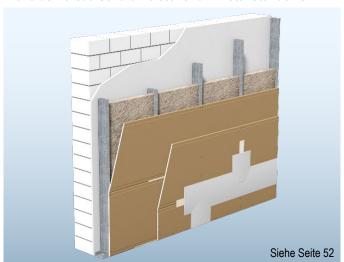
Systemübersicht

KNAUF


W623.de Vorsatzschale direkt befestigt - Metall-UK CD 60/27

Z. B. W623.de, 12,5 mm Safeboard

- Einfachständerwerk mit CD-Profilen
- Punktweise Aussteifung mit Direktschwingabhänger, max. 1500 mm Abstand
- Einlagige oder zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Wandhohlraum 40 bis 127 mm
- Wandhöhe bis 10,00 m


W625.de Vorsatzschale freistehend – Metallständer CW – Einlagig beplankt

- Einfachständerwerk mit CW-Profilen freistehend
- Einlagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Mindestdicke ≥ 72,5 mm
- Wandhöhe bis 5,90 m

Z. B. W625.de, 12,5 mm Diamant

W626.de Vorsatzschale freistehend – Metallständer CW – Mehrlagig beplankt

Z. B. W626.de, 2x 12,5 mm Silentboard

- Einfachständerwerk mit CW-Profilen freistehend
- Zweilagige oder dreilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Mindestdicke ≥ 85 mm
- Wandhöhe bis 7,80 m

Z. B. W653.de, 25 mm Massivbauplatte

- Einfachständerwerk mit CW-Profilen freistehend
- Ständerachsabstand bis 1000 mm
- Einlagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Mindestdicke ≥ 105 mm
- Wandhöhe bis 5,90 m

W61.de Knauf Vorsatzschalen

W623.de Direkt befestigt – Metall-Unterkonstruktion CD 60/27

Systemvarianten

Knauf System	Beplankung						Mindest- dicke	Profil Knauf	Hohl- raum	Schallschutz				
	Knauf Bauplatte	Massivbauplatte	Diamant	Silentboard	Drystar-Board	Mindest- Dicke d mm	D mm	CD	h mm	Dämm- schicht mm	Verbesse- rungsmaß ΔR _{w,heavy} dB	Resonanz- frequenz $\mathbf{f_0}$ Hz		
W623.de Vorsatzschale direkt be	festi	gt	Meta	all-Un	terko	nstruktion CE) 60/27 – Dire	ekt befestigt i	mit Direktschv	vingabhänger -	- Einlagig/Zwei	lagig beplankt		
	•					12,5	≥ 52,5	60/27	≥40	≥30	8	79		
			•			12,5	≥ 52,5	60/27	≥40	≥30	12	65		
Ständerachsabstand ≤ 625 mm				•		12,5	≥ 52,5	60/27	≥40	≥30	14	56		
					•	12,5	≥ 52,5	60/27	≥40	≥30	9	69		
	•					2x 12,5	≥65	60/27	≥40	≥30	11	56		
			•	•		12,5 + 12,5	≥65	60/27	≥40	≥30	16	43		
Ständerachsabstand ≤ 625 mm			•			2x 12,5	≥65	60/27	≥40	≥30	15	47		
				•		2x 12,5	≥65	60/27	≥40	≥30	16	40		

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

Bei Mischbeplankungen stets Diamant als Decklage.

Schallschutz-Nachweis

Hinweise

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Vorsatzschalen W61.de.

SWK 11 108

W625.de Freistehend – Metallständer CW – Einlagig beplankt

Systemvarianten

Knauf System	Вер	olank	ung				Mindest- dicke	Profil Knauf CW	Hohl- raum	Schallschutz				
	Knauf Bauplatte	Massivbauplatte	ŧ	nt oard		Mindest- Dicke		CW		Dämm- schicht	Verbesse- rungsmaß	Resonanz- frequenz		
	Knauf	Massiv	Diamant	Silentboard	Drystar-Board	d mm	D mm		h mm	mm	$\Delta R_{w,heavy}$ dB	f ₀ Hz		
W625.de Vorsatzschale freistehe	nd									Metallstä	nder CW – Ein	lagig beplankt		
							≥72,5	50	≥60	40	10	64		
	•					12,5	≥97,5	75	≥85	60	11	54		
							≥ 122,5	100	≥ 110	80	12	47		
							≥72,5	50	≥60	40	13	53		
			•			12,5	≥97,5	75	≥85	60	13	45		
							≥ 122,5	100	≥ 110	80	14	39		
							≥72,5	50	≥60	40	15	45		
Ständerachsabstand ≤ 625 mm				•		12,5	≥97,5	75	≥85	60	14	38		
						12,5	≥ 122,5	100	≥ 110	80	17	33		
							≥232,5	100	≥220	80	21	24		
							≥72,5	50	≥60	40	11	57		
					•	12,5	≥97,5	75	≥85	60	12	48		
							≥ 122,5	100	≥ 110	80	14	42		

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

Hinweise

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Vorsatzschalen W61.de.

W61.de Knauf Vorsatzschalen

W626.de Freistehend – Metallständer CW – Mehrlagig beplankt

Systemvarianten

Knauf System	Beplankung						Mindest- dicke	Profil Knauf	Hohl- raum	Schallschutz			
	Knauf Bauplatte	Massivbauplatte	int	board	Drystar-Board	Mindest- Dicke		CW		Dämm- schicht	Verbesse- rungsmaß	Resonanz- frequenz	
	Knauf	Massiv	Diamant	Silentboard	Drysta	d mm	D mm		h mm	mm	$\Delta R_{w,heavy}$ dB	f ₀ Hz	
W626.de Vorsatzschale freistehe	nd									Metallstän	der CW – Meh	rlagig beplankt	
							≥ 85	50	≥60	40	13	46	
	•					2x 12,5	≥ 110	75	≥85	60	14	39	
							≥ 130	100	≥ 110	80	15	34	
				•		12,5	≥ 85	50	≥60	40	16	35	
						+	≥ 110	75	≥85	60	16	30	
			•			12,5	≥ 130	100	≥ 110	80	18	26	
				•		12,5	≥ 72,5	50	≥60	40	16	33	
							≥97,5	75	≥85	60	17	27	
Ctindensheabstand			•			18	≥ 122,5	100	≥ 110	80	18	24	
Ständerachsabstand ≤ 625 mm							≥ 85	50	≥60	40	14	38	
			•			2x 12,5	≥ 110	75	≥85	60	16	32	
							≥ 130	100	≥ 110	80	17	28	
							≥ 72,5	50	≥60	40	16	33	
						2v 42 E	≥97,5	75	≥85	60	17	28	
				•		2x 12,5	≥ 122,5	100	≥ 110	80	18	24	
							≥ 245	100	≥ 220	80	24	17	
Ständerachsabstand ≤ 625 mm			•	•		2x 12,5 + 18	≥ 263	100	≥ 220	80	25	14	

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

Bei Mischbeplankungen stets Diamant als Decklage.

Hinweise

Hinweise auf Seite 6 beachten.

W653.de Vorsatzschale freistehend – Metallständer CW – Einlagig beplankt

Systemvarianten

Knauf System	Beplankung						Mindest- dicke	Profil Knauf	Hohl- raum	Schallschutz				
	Knauf Bauplatte	Massivbauplatte	Diamant	Silentboard	Drystar-Board	Mindest- Dicke d mm	D mm	CW	h mm	Dämm- schicht mm	Verbesse- rungsmaß $\Delta R_{w,\text{heavy}}$ dB	Resonanz- frequenz $\mathbf{f_0}$ Hz		
W653.de Vorsatzschale freistehe	nd									Metallstä	nder CW – Ein	lagig beplankt		
		•				20	≥105	75	≥85	60	14	38		
							≥130	100	≥110	80	15	34		
Ständerachsabstand ≤ 1000 mm						25	≥110	75	≥85	60	15	35		
		•				20	≥135	100	≥ 110	80	16	31		

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

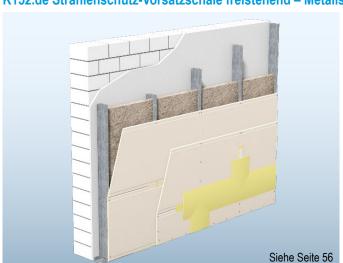
SWK 11 108

Hinweise auf Seite 6 beachten.

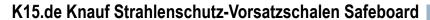
Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Vorsatzschalen W61.de.

K15.de Knauf Strahlenschutz-Vorsatzschalen Safeboard

Systemübersicht


K151.de Strahlenschutz-Vorsatzschale Safeboard – direkt befestigt – Metall-UK CD 60/27

Z. B. K151.de, 2x 12,5 mm Safeboard


- Einfachständerwerk mit CD-Profilen
- Punktweise Aussteifung mit Direktschwingabhänger, max. 1500 mm Abstand
- Mit Dämmstoffeinlage für Schallschutz
- Wandhohlraum 40 bis 127 mm
- Strahlenschutz mit Safeboard
- Wandhöhe bis 10,00 m

K152.de Strahlenschutz-Vorsatzschale freistehend – Metallständer CW

Z. B. K152.de, 2x 12,5 mm Safeboard

- Einfachständerwerk mit CW-Profilen freistehend
- Mit Dämmstoffeinlage für Schallschutz
- Mindestdicke ≥ 85 mm
- Strahlenschutz mit Safeboard
- Wandhöhe bis 5,10 m

K151.de Strahlenschutz-Vorsatzschale Safeboard – direkt befestigt

Systemvarianten

Knauf System	Bep	lank	ung	Mindest- dicke	Profil Knauf CD	Hohlraum	Schallschutz		
	Diamant	Safeboard	Mindest- Dicke d mm	D mm	CD	h mm	Dämm- schicht mm	Verbesse- rungsmaß $\Delta R_{w,heavy}$ dB	Resonanz- frequenz $\mathbf{f_0}$ Hz
K151.de Strahlenschutz-Vorsatzs	schal	e – S	afeboard		Me	etall-UK CD 60/2	7 – Direkt befes	tigt mit Direktsch	nwingabhänger
Ständerachsabstand ≤ 625 mm		•	2x 12,5	≥ 52,5	60/27	≥40	≥30	16	40
Ständerachsabstand ≤ 625 mm	•	•	2x 12,5 + 12,5	≥ 52,5	60/27	≥40	≥30	15	35

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

Bei Mischbeplankungen stets Diamant als Decklage.

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Broschüre Knauf Sicherheitstechnik ST01.de.

K15.de Knauf Strahlenschutz-Vorsatzschalen Safeboard

K152.de Strahlenschutz-Vorsatzschale freistehend – Metallständer CW

Systemvarianten

Knauf System	Bep	olank	ung	Mindest- dicke	Profil Knauf	Hohlraum	Schallschutz						
	Diamant	Safeboard	Mindest- Dicke d mm	D mm	CW	h mm	Dämm- schicht mm	Verbesse- rungsmaß ΔR _{w,heavy} dB	Resonanz- frequenz $\mathbf{f_0}$ Hz				
K152.de Strahlenschutz-Vorsatz	schal	e – S	afeboard	Metallstä									
				≥85	50	≥60	40	16	45				
Ständerachsabstand		•	2x 12,5	≥110	75	≥85	60	17	38				
≤ 625 mm				≥135	100	≥110	80	18	33				
` <u>\</u>				≥97,5	50	≥60	40	17	29				
[Ständerachsabstand]	•	•	2x 12,5 + 12,5	≥ 122,5	75	≥85	60	18	24				
≤ 625 mm	- ·			≥ 147,5	100	≥110	80	19	21				

Kursive Werte: Berechnete Schalldämm-Verbesserungsmaße nach DIN 4109-33:2016-07 mit einer flächenbezogenen Masse der Grundwand von 340 kg/m². Resonanzfrequenzen berechnet nach DIN 4109-33:2016-07.

Bei Mischbeplankungen stets Diamant als Decklage.

Schallschutz-Nachweis SWK 11 108 Hinweise

Holzständerwände/Holztafelbau-Wände mit Gipsplatten


Die Wände sind nach dem gleichem Konstruktionsprinzip wie Metallständerwände aufgebaut. Da anstelle einer federnden Unterkonstruktion (dünne Metallprofile) starre Holzständer und -riegel eingesetzt werden, sind hohe Schallschutzwerte nur durch konsequente Trennung der Schalen durch Doppelständerreihen, oder zusätzliche Anordnung von "elastischen" Zwischenschichten (z. B. Federschienen zwischen Holzunterkonstruktion und Gipsplatte) erreichbar. Tragende bzw. aussteifende Holztafeln werden i. d. R. vorgefertigt und im Fertighausbau eingesetzt. Nichttragende Holzständerwände werden alternativ zu Metallständerwänden verwendet. Die Konstruktionen mit den wichtigsten Anwendungskriterien zeigen die Abbildungen im nachfolgenden Kapitel. Die technischen und bauphysikalischen Daten der Konstruktionen mit den bewerteten Schalldämm-Werten R_w sind in den Tabellen im nachfolgenden Kapitel zusammengefasst.

Systemübersicht

KNAUF


W121.de/W122.de Holzständerwand nichttragend – Einfachständerwerk

Z. B. W122.de, 2x 12,5 mm Feuerschutzplatte Knauf Piano

- Einfachständerwerk, Rippen mind. 60 x 60 mm
- Einlagige/Zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 36 bis 50 dB
- Gesamtdicke 85 bis 130 mm
- Wandhöhe bis 4,10 m
- Feuerwiderstand bis F90

W124.de/W125.de Holzständerwand nichttragend – Doppelständerwerk

Z. B. W125.de, 2x 12,5 mm Diamant

- Doppelständerwerk, Rippen mind. 60 x 60 mm
- Einlagige/Zweilagige Gipsplattenbeplankung
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 53 bis 68,8 dB
- Gesamtdicke 150 bis 215 mm
- Wandhöhe bis 4,10 m
- Feuerwiderstand bis F90

W12.de Einfachständerwerk/Doppelständerwerk

Systemvarianten

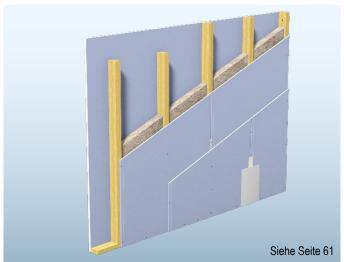
Knauf System		Вер	lank	ung	je W	andseite	Wand- dicke	Holz- ständer	Schallsch	nutz			
Einfachständerwerk Doppelständerwerk	Feuerwiderstandsklasse	Knauf Bauplatte	Feuerschutzplatte Knauf Piano	Massivbauplatte		Mindest- Dicke	uicke	Mindest- Quer- schnitt b x h	Dämm- schicht Mindest- Dicke	Schalldän	nm-Maß Spektrum Anpassur		R _{w,R}
E 0	Feuerw	Knauf	Feuers	Massivl	Diamant	d mm	D mm	mm	mm	dB	C dB	C _{tr} dB	dB
W121.de Holzständerwand nich	nttragen	d								Einfach	nständerwe	rk – Einlagi	ig beplankt
			•			12,5	85	60 x 60	40	39	-2	-8	37
Ständerachsabstand ≤ 625 mm	F30				•	12,5	85	60 x 60	60	41	-2	-4	39
					•	15	90	60 x 60	60	41	-	_	39
	F90			•		25	110	60 x 90	80	36	-2	-4	34
W122.de Holzständerwand nich	nttragen	d								Einfachs	tänderwerl	c – Zweilagi	ig beplankt
Ständerachsabstand	F30	•				2x 12,5	110	60 x 60	40	43	-1	-6	41
≤ 625 mm			•			2x 12,5	110	60 x 60	40	40	_	_	41
YYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY	F90				•	2x 12,5	110	60 x 60	60	45 50 ¹⁾	-2 -1	-3 -5	43 48 ¹⁾
W124.de Holzständerwand nich	nttragen	d								Doppe	lständerwe	rk – Einlagi	ig beplankt
 Ständerachsabstand₁			•			12,5	150	60 x 60	2x 40	53	-4	-11	51
≤ 625 mm	F30				•	12,5	150	60 x 60	2x 60	60	-4,1	-11,4	58
					•	15	155	60 x 60	2x 60	54	-	-	56
	F90			•		25	175	60 x 60	2x 60	54	-	-	56
W125.de Holzständerwand nich	nttragen	d								Doppels	tänderwerl	k – Zweilagi	ig beplankt
Ständerachsabstand ≤ 625 mm	F30	•				2x 12,5	175	60 x 60	2x 40	61	-4	-10	59
	F90		•			2x 12,5	175	60 x 60	2x 40	≥ 61	-	-	≥ 59
					•	2x 12,5	175	60 x 60	2x 60	68,8	-2,9	-8,9	66

[■] W121.de/W122.de: Schallschutzwerte für geschraubte Plattenlagen in Unterkonstruktion, bei geklammerten Plattenlagen 2 dB abziehen.

Schallschutz-Nachweise L 011-10.07 / L 041-09-14 Hinweise auf Seite 6 beachten.

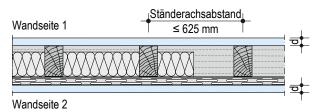
Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzständerwände W12.de.

¹⁾ Oberste Plattenlage in darunter liegende Plattenlage geklammert, ohne Brandschutzanforderung an die oberste Plattenlage Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.


W55.de Knauf Holztafelbau-Wände

Systemübersicht

W555.de Holztafelbau-Innenwand – Ohne / Mit Installationsebene


Z. B. W555.de, 2x 12,5 mm Diamant Ständerachsabstand Wandseite 1 ≤ 625 mm Wandseite 2

Z. B. W555.de, Direktbeplankung bzw. Direktbeplankung mit zusätzlicher Installationsebene

W556.de Holztafelbau-Innenwand – Mit entkoppelter Beplankung auf Federschiene bzw. auf Holzlatte

Siehe Seite 62

Z. B. W556.de, 2x 12,5 mm Diamant

Z. B. W556.de, mit entkoppelter Beplankung auf Federschiene

■ Innenwand tragend und raumabschließend

■ Innenwand tragend und raumabschließend

Holzständerwerk, Rippen mind. 60 x 60 mm Mit Dämmstoffeinlage für Schallschutz

Bewertetes Luftschalldämm-Maß R_w: 36 bis 64,1 dB

■ Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m

■ Direktbeplankung

auf Anfrage.

■ Feuerwiderstand bis F90

- Mit entkoppelter Beplankung auf Federschiene
- Holzständerwerk, Rippen mind. 60 x 60 mm
- Mit Dämmstoffeinlage für Schallschutz
- Bewertetes Luftschalldämm-Maß R_w: 53 bis 71 dB
- Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m auf Anfrage.
- Feuerwiderstand bis F90

Systemvarianten

	Вер	olank ndsei					War	ndsei	ite 2				Holz- stän-	-	olankı allati	ung onsebene	Schalls	chutz			
	ano												der				Dämm- schicht	Schall	dämm-N	laß	
Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Silentboard	Mind Dicke	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Silentboard	Mind Dicke	Mind Quer- schnitt b x h	Diamant / Diamant X	Silentboard	Mind Dicke	Mind Dicke	R _w	wert	sungs-	R _{w,R}
Feue	Feue	Knar	Mass	Diam	Silen	d mm	Feue	Knar	Mass	Diam	Silen	d mm	mm	Diam	Silen	mm	mm	dB	C dB	C _{tr} dB	dB
W555	.de F	lolzta	afelba	au-In	nenw	and – Ohn	e Ins	tallat	ionse	bene	9										
	•					12,5	•					12,5	60 × 60				40	39	-2	-5	37
				•		12,5				•		12,5	60 x 60				40	41	-2	-3	39
	•					12,5	•					12,5	F0 00				00	39	_	_	37
				•		12,5				•		12,5	50 x 80				60	41	_	_	39
F30				•	•	12,5 + 12,5				•	•	12,5 + 12,5					80	47,1	-1,3	-3,8	45
				•	•	12,5 + 12,5				•		12,5	60 x 90				80	45,4	-1,2	-3,7	43
			•			25			•			25	63 x 90				80	36	-2	-4	34
				•		2x 12,5				•		12,5					80	41	_	_	39
F60				•	•	12,5 + 12,5				•		12,5	60 x 100				80	45	-1,2	-3,7	43
				•		2x 12,5				•		2x 12,5					80	45	-1,3	-3,7	43
				•		2x 15				•		2x 15	60 x 100				80	44	-1,9	-6,0	42
F90		•				2x 18		•				2x 18	60 x 90				80	44	-	-	42
				• ¹)		2x 18				• ¹)		2x 18	60 X 90				80	44,2	-1,8	-6,2	42
W555	.de F	lolzta	afelba	au-In	nenw	and – Mit I	nstal	latio	nsebe	ene a	uf Fe	ederschier	e inkl. zusä	itzl. C)ämm	schicht 30	mm				
				•		2x 12,5				•		12,5		•		12,5	80	60,6	-4,4	-11,8	58
F30				•	•	12,5 + 12,5				•		12,5	60 x 90		•	12,5	80	64,1	-4,3	-11,8	62
				•		2x 12,5				•		12,5		•		12,5	80	60	-4,4	-11,8	58
F60				•	•	12,5 + 12,5				•		12,5	60 x 100		•	12,5	80	64	-4,3	11,8	62
F90		•				2x 18		•				2x 18	60 x 90	•		12,5	80	58	_	_	56

¹⁾ Nur Diamant X mit Plattenbreite 1250 mm möglich, Mindestabnahmemengen anfragen.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Bei Mischbeplankungen stets Diamant als Decklage.

Dämmschicht im Bereich der Installationsebene: 30 mm; längenbezogener Strömungswiderstand nach EN 29053; $r \ge 11 \text{ kPa} \cdot \text{s/m}^2$.

Schallschutz-Nachweise
L 005-10.07 / L 011-10.07 / L 045-04.16 / L 049-02.17

	Hinweise auf Seite 6 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

W55.de Knauf Holztafelbau-Wände

W556.de Holztafelbau-Innenwand mit entkoppelter Beplankung

Systemvarianten

	•								Holz-	Schallschu								
		ndsei	ite 1					ndsei	te 2				stän- der	Dämm- schicht	tkoppelte Be Schalldämr	_	usive Damms	chicht
Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Silentboard	Mindest- Dicke d mm	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Silentboard	Mindest- Dicke d mm	Mindest- Quer- schnitt b x h	Mindest- Dicke	$R_{\rm w}$	Spektrum- Anpassung C dB	swert C _{tr} dB	$R_{w,R}$
						and – Mit e									u.	u.b	QD.	u.b
	•					12,5	•					12,5			55	_	-	53
-				•		12,5				•		12,5	60 x 60	40	55	_	_	53
500	•					12,5	•					12,5	50 00		55	_	_	53
F30				•		12,5				•		12,5	50 x 80	60	55	-	-	53
			•			25			•			25	60 x 90	80	53	-4	-10	51
F60				•		12,5				•		12,5	CO 100	80	55	-2	-7	53
				•		2x 12,5				•		2x 12,5	60 x 100	80	62	_	-	60
F00			•	•		25 + 12,5			•	•		25 + 12,5	60 x 100	80	71	_	-	69
F90				•		2x 15				•		2x 15	60 x 90	80	62	-	-	60
		•				2x 18		•				2x 18	00 X 90	80	63	-	-	60
W556	de H	lolzta	afelba	au-In	nenw	and – Mit e	entko	ppelt	er Be	eplan	kung	g auf Holzla	atte 50 x 30	mm				
F60				•		2x 12,5				•		2x 12,5	60 x 100	80	50	-1,9	-5,6	48

Schallwerte sind mit Holzständerquerschnitt 60 x 90 mm gemessen.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Bei Mischbeplankungen stets Diamant als Decklage.

Dämmschicht im Bereich der Installationsebene: 30 mm; längenbezogener Strömungswiderstand nach DIN EN 29053; $r \ge 11 \text{ kPa} \cdot \text{s/m}^2$.

Schallschutz-Nachweise L 005-10.07 / L 011-10.07 / L 045-04.16 / L 049-02.17

Hinweise

Hinweise auf Seite 6 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

Einbauteile für Knauf Wände

Fertigfenster in Monoblockbauweise Schiebetür-System Pocket Kit Silent Steckdosen und Schalter

Fertigfenster in Monoblockbauweise

Systemübersicht

Fertigfenster in Monoblockbauweise

- EasyWin® Standardfenster, feste Abmessungen
- EasyWin® Plus flexible Abmessungen
- EasyWin® Plus Silence Schallschutzfenster
- EasyWin® Plus Jalousie innenliegende Jalousie
- FlatWin Flächenbündiges Fenster
- FireWin® F30 Brandschutzfenster F30
- Maulweite von 100 bis150 mm (Sonderwandstärken 80 bis 300 mm)
- Alle Farben ähnlich RAL/NCS oder eloxiert möglich

Fertigfenster in Monoblockbauweise

Maulweite			z -Maß		
		R _w	Spektrum-Ang C	cassungswert C _{tr}	$R_{w,R}$
mm	mm	dB	dB	dB	dB
EasyWin [®]					
100	5 mm Float / 5 mm Float	39	-2	-4	36
125	5 mm Float / 5 mm Float	38	-1	-4	36
EasyWin® Plus					
100	6 mm Float / 5 mm Float	41	-2	-6	39
150	6 mm Float / 5 mm Float	43	-1	-2	41
100	6 mm VSG / 6 mm ESG	42	-2	-8	40
150	6 mm VSG / 6 mm ESG	46	-2	-4	44
EasyWin® Plus Silence					
100	6 mm VSG / 6 mm ESG	47	-2	-7	45
150	6 mm VSG / 6 mm ESG	49	-1	-5	47
EasyWin® Plus Jalousie					
100	6 mm VSG / 6 mm ESG	42	-2	-9	40
FlatWin					
125	8 mm ESG / 8 mm ESG	42,5	-2,8	-3,4	40
FireWin® F30					
125	6 mm ESG / 11 mm Brandschutzglas El30 / 6 mm ESG	44	-4	-11	42

Schallschutz-Nach	weise
1 040 00 44	

Systemübersicht

Pocket Kit Silent

- Erfüllt Schallschutzklasse 2 nach VDI 3728
- Fertigwanddicke 150 mm
- Einflügelig
- Maximale Türblatthöhe 2110 mm / -breite 735 bis 1110 mm

Schiebetür-System – Pocket Kit Silent

- Maximales Türblattgewicht 120 kg
- Geprüft mit Schallschutztüren von Westag, Herholz und JELD-WEN

Schiebetür-System Pocket Kit Silent

Hersteller	Türblatt	Türblattdicke		Schallschutz Schalldämm-Maß				
			R_w	Spektrum-Ang C	$R_{w,R}$			
		mm	dB	dB	C _{tr} dB	dB		
Pocket Kit Silent								
Westag	Schallschutztürblatt SK32-1-40	40	38,8	-1,6	-4,6	33		
Herholz	Schallschutztürblatt SST 2-1	39 – 41	37,9	-1,2	-3,6	32		
JELD-WEN	Optima 41-S stumpf	40	38,3	-1,4	-4,2	33		

Hinweis

Zur Einhaltung der Schalldämm-Maße ist ein möglichst luftdichter, umlaufender Anschluss herzustellen. Hierfür ist das Schiebetürsystem Pocket Kit Silent unter anderem mit einer absenkbaren Bodendichtung ausgestattet. Bei unebenen Bodenbelägen und Nadelfilze sowie Teppichböden muss zur Herstellung eines dichten Anschlusses unter dem Türblatt eine Bodenschwelle vorgesehen werden.

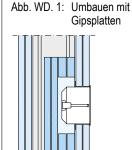
Schallschutz-Nachweis L 053-07.18 Hinweise auf Seite 6 beachten.

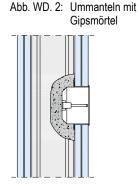
Hinweise

Weitere Angaben zu Planung und Ausführung siehe Broschüre Knauf Schiebetür-System Pocket Kit Silent W496S.de.

Steckdosen und Schalter

Steckdosen und Schalter in Metallständerwänden


Der Einfluss von Steckdosen und Schalter in einer Metallständerwand auf das resultierende Schalldämm-Maß hängt von mehreren Faktoren ab:


- Schalldämm-Maß der Grundwand
- Einseitiges oder gegenüberliegendes Vorsehen der Einbauteile
- Vorsehen von Dämmstoff hinter den Steckdosen und Schalter
- Ausführung der Öffnung (passgenau für Hohlwanddose)
- Verwendeter Typ der Hohlwanddosen, Schalter- und Steckdosenverkleidungen

Eine Untersuchung aller handelsüblichen Einbauteile würde einen enorm hohen Mess- und Zeitaufwand bedeuten und wäre nicht zu händeln. Das Schalldämm-Maß der Grundwand hat einen wesentlichen Einfluss und wurde wie folgt berücksichtigt:

- Aussagen für Wände mit einem Schalldämm-Maß $R_w \le 58 \text{ dB}$ Schalldämm-Maß der Grundwand ohne Einbauteile $R_{w,0} = 58 \text{ dB}$
- Aussagen für Wände mit einem Schalldämm-Maß 58 dB < R $_{\rm w}$ \le 78 dB Schalldämm-Maß der Grundwand ohne Einbauteile R $_{\rm w,0}$ = 78 dB

Daher kann als Anhaltspunkt die folgenden Aussagen bei Verwendung handelsüblicher Einbauteile verwendet werden. Voraussetzung ist immer ein durchgehender Faserdämmstoff in der Trennwand, der bei Notwendigkeit durch die Hohlraumdosen gestaucht werden kann, jedoch nicht entfernt oder geschwächt werden sollte. Ist dies nicht möglich, müssen ggf. anderweitige Maßnahmen wie beispielsweise das Umbauen mit Gipsplatten oder Ummanteln mit Gipsmörtel der Öffnung im Wandzwischenraum vorgesehen werden.

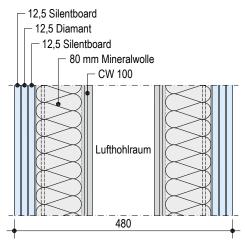
Tab. WD. 1: Einfluss von Schalter und Steckdosen auf das Schalldämm-Maß von Wänden

Schema	Anmerkung	Einfluss	Zeile
Bei Wänden bis zu einem Schalldämm-Maß von $R_{\rm w}$	10		
	Bei einseitig angeordneten Doppelbohrungen und handelsüblichen Hohlwanddosen und Schalter- bzw. Dosenblenden	Bis zu 0-1 dB	1
	Bei beidseitig angeordneten, um ein Ständerfeld versetzten Doppelbohrungen und handelsüblichen Hohlwanddosen und Schalter- bzw. Dosenblenden	Bis zu -1 dB	2
	Bei beidseitig angeordneten, unmittelbar gegenüberliegenden Doppelbohrungen und handelsüblichen Hohlwanddosen und Schalter- bzw. Dosenblenden	Bis zu -2 dB	3
	Bei zwei beidseitig angeordneten, unmittelbar gegenüberliegenden Doppelbohrungen und handelsüblichen Hohlwanddosen und Schalter- bzw. Dosenblenden	Bis zu -3 dB	4
Bei Wänden mit einem Schalldämm-Maß von 58 < $R_{_{V}}$	_v ≤ 78 dB: z. B. W112.de; CW 100; 2x 12,5 mm Silentboard		
	Beidseitig zwei Doppelbohrungen ohne Hohlwanddosen und Blenden versetzt um zwei Ständerfelder	Bis zu -4 dB	5
	Beidseitig zwei Doppelbohrungen ohne Hohlwanddosen und Blenden versetzt um ein Ständerfelder	Bis zu -10 dB	6
	Beidseitig zwei Doppelbohrungen ohne Hohlwanddosen und Blenden direkt gegenüberliegend	Bis zu -20 dB	7
	Beidseitig zwei Doppelbohrungen mit handelsüblichen Hohlwanddosen und Blenden direkt gegenüberliegend	Bis zu -5 dB	8
	Einseitig zwei mal 2 Doppelbohrungen mit handelsüblichen Hohlwanddosen und Blenden um zwei Felder versetzt	Bis zu -3 dB	9

Neben den Messungen mit handelsüblichen Hohlwanddosen wurden seitens der Firma Kaiser GmbH & Co. KG weiterführende Messungen mit den eigenen Schallschutzdosen durchgeführt. Aus dem Prüfzeugnis der GRANER + PARTNER INGENIEURE GmbH Prüfzeugnisnummer: A2283-I ist folgendes zu entnehmen:

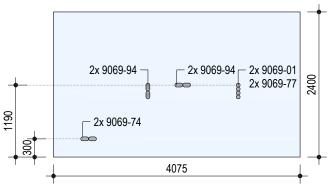
- Schalldämmung der Trennwand ohne Einbauten
- $R_w = 78 \text{ dB}$
- Schalldämm-Maß mit folgenden Einbauten:
 - 2 x 2 Doppel-Schallschutz-Electronic-Dose Typ 9069-94
 - 1 x 2 Doppel-Schallschutz-Electronic-Dose Typ 9069-74
 - 2 x Schallschutzdosen Typ 9069-01
 - 2 x Schallschutzdosen Typ 9069-77

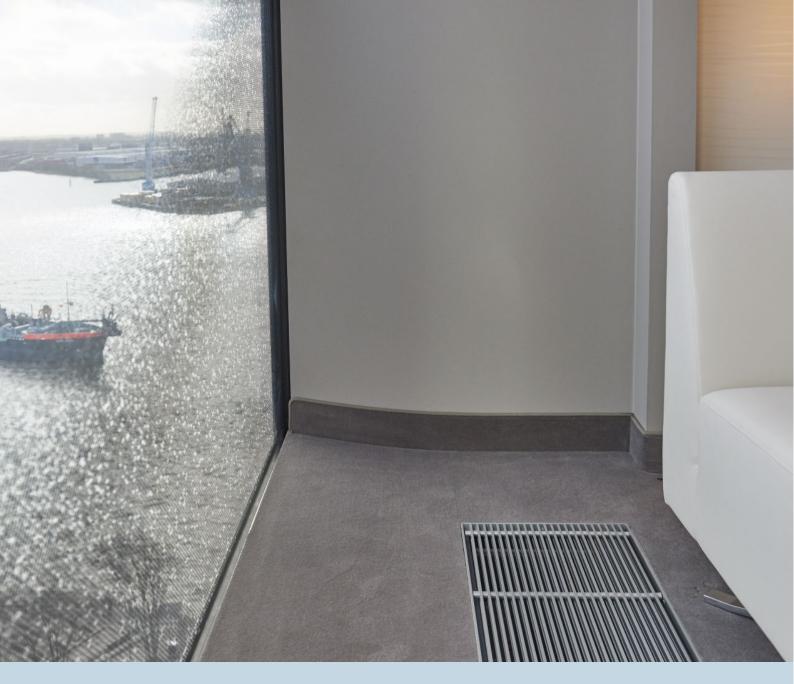
Jeweils beidseitig eingebaut


 $R_{w} = 78 \text{ dB}$

Aus den Messblättern geht hervor, dass nicht nur der Einzahlwert identisch ist, sondern dass es auch frequenzabhängig kaum zu Unterschieden gekommen ist.

Aufbau der geprüften Wand:


Schemazeichnungen I Maße in mm


Abb. WD. 3: Vertikalschnitt

- 12,5 mm Silentboard + 12,5 mm Diamant + 12,5 mm Silentboard
- Profil CW 100
- 80 mm Mineralwolle im Ständerwerk eingestellt
- Lufthohlraum
- Ständerwerk und Beplankung wie zuvor
- Fertigwanddicke 480 mm

Abb. WD. 4: Ansicht

Wandverjüngungssysteme Reduzierte Anschlüsse für Knauf Wände

Wandverjüngungen stellen insbesondere bei hochschalldämmenden Wandkonstruktionen eine Schwachstelle dar. Messungen im Prüfstand zeigten, dass neben dem Schalldämm-Maß der Wandverjüngung auch die Anschlusssituationen einen relevanten Einfluss auf das resultierende Schalldämm-Maß der gesamten Wandkonstruktion ausüben. Aus diesem Grund kann nicht wie beim resultierenden Schalldämm-Maß beispielsweise aus Wand- und Fensterfläche mit einem einfachen Flächenverhältnis gerechnet werden.

Um den Einfluss des Anschlusspunktes zu berücksichtigen, wurden zwei Messreihen einmal mit einer Wandverjüngungsbreite von 625 mm und zum anderen mit 312,5 mm durchgeführt. Die Messresultate können in Abhängigket der vorgesehenen Trennwand und der einzubauenden Wandverjüngung den folgenden Tabellen entnommen werden.

Alternativ zu dem Tabellenverfahren kann das resultierende Schalldämm-Maß nach der Formel (30) aus der in der Broschüre Ermittlung der Schalldämmung im eingebauten Zustand SS03.de berechnet werden. Dabei ist darauf zu achten, dass in Abhängigkeit von der Länge der Wandverjüngung das jeweilig richtige Schalldämm-Maß verwendet wird.

Wandverjüngungen mit einer Länge von 625 mm

	Wandverjüngung		ltypen												
Variante	Aufbau			ldämm- enbauw) dB		Trock	enbauv 0 dB	vand	Trock	enbauw 5 dB	vand	Trock	vand		
Ze	Zeichnerische Darstellungen siehe Seite 71 Schall- dämm- Maß in dB				nall- Resultierendes Schalldämm-Maß in dB Flächenanteil der Wandverjüngung										25 %
1	 1x 15 mm Diamant beidseitig 20 mm Mineralwolle TP 120 A Anschluss "Pfosten" 2x L-Winkel 13/30/08 	R _w	45,5	49,4	49,0	48,4	55,0	53,2	51,1	55,9	53,7	51,4	56,3	53,9	51,5
	■ Anschluss Wand" 2v I - Winkel 13/30/08	$R_{w,R}$	43	48	47	46	53	50	48	53	50	48	54	51	48
2	 1x 12,5 mm Silentboard beidseitig 12 mm Mineralwolle TPE 12-2 Anschluss "Pfosten" 2x L-Winkel 13/30/08 	R _w	46,5	49,6	49,3	48,8	55,7	54,0	52,0	56,8	54,7	52,3	57,3	54,9	52,5
	■ Anschluss Wand" 2v I -Winkel 13/30/08	$R_{w,R}$	44	49	48	47	53	51	49	54	52	49	54	52	49
3	 1x 15 mm Fireboard (Decklage) + 2 mm verzinktes Stahlblech beidseitig 12 mm Mineralwolle TPE 12-2 	R _w	50,3	50,0	50,0	50,1	57,8	56,6	55,1	59,8	58,0	55,9	60,8	58,6	56,2
3	 Anschluss "Pfosten" U-Profil 18/30/08 Anschluss "Wand" 2x L-Winkel 13/30/08 Wandverjüngungsdicke 48 mm 	$R_{w,R}$	48	49	49	49	56	55	53	58	55	53	58	56	53
	■ 20 mm Milleralwolle TP 120 A	R _w	50,2	50,0	50,0	50,	57,7	56,6	55,0	59,8	57,9	55,8	60,7	58,5	56,1
4	 Anschluss "Pfosten" 2x L-Winkel 13/30/08 Anschluss "Wand" 2x L-Winkel 13/30/08 Wandverjüngungsdicke 47 mm 	$R_{w,R}$	48	49	49	49	56	55	53	58	55	53	58	56	53
	 12,5 mm Diamant (Decklage) + 12,5 mm Silentboard beidseitig 30 mm Mineralwolle TP 120 A 	R _w	52	50,1	50,2	50,4	58,5	57,6	56,3	61,0	59,4	57,4	62,2	60,1	57,8
5	 Anschluss "Pfosten" Profil UD 28/27 Anschluss "Wand" Profil UD 28/27 Wandverjüngungsdicke 78 mm 	$R_{w,R}$	50	49	49	49	57	56	54	59	57	55	60	58	55
	 1x 12,5 mm Silentboard (Decklage) + 2 mm verzinktes Stahlblech beidseitig 20 mm Mineralwolle TP 120 A 	R _w	56,8	50,3	50,5	51,0	59,6	59,4	59,0	63,4	62,5	61,2	65,9	64,2	62,2
6	 Anschluss "Pfosten" 2x L-Winkel 13/30/08 Anschluss "Wand" 2x L-Winkel 13/30/08 Wandverjüngungsdicke 47 mm 		54	50	50	50	59	58	57	62	60	59	63	61	59

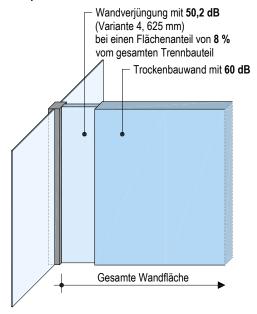
Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Dämmstoffe von Knauf Insulation.

Hinweise Weitere A

Reduzierte Anschlüsse für Knauf Wände

Wandverjüngungen



Wandverjüngungen mit einer Länge von 312,5 mm

Variante	WandverjüngungWandtypenAufbauSchalldämm-MaßTrockenbauwand mit 50 dBTrockenbauwand mit 60 dBTrockenbauwand mit 60 dBTrockenbauwand mit 60 dB								nbauwand Trockenbauwand dB mit 70 dB						
Zeichnerische Darstellungen siehe Seite 71 Schall- dämm- Maß in dl						der Wa	ndverji			4%	8%	14 %	4%	8%	14 %
4	■ 1x 12,5 mm Silentboard beidseitig ■ 20 mm Mineralwolle TP 120 A ■ Appelying Proston" 2x I Wiskel 12/20/09	R _w	47,8	49,9	49,8	49,6	57,9	56,5	55,0	60,1	57,9	55,9	61,2	58,5	56,2
	 Anschluss "Pfosten" 2x L-Winkel 13/30/08 Anschluss "Wand" 2x L-Winkel 13/30/08 Wandverjüngungsdicke 47 mm 	$R_{w,R}$	45	49	49	48	56	54	52	58	55	53	58	55	53
6	 1x 12,5 mm Silentboard (Decklage) + 2 mm verzinktes Stahlblech beidseitig 20 mm Mineralwolle TP 120 A 	R _w	54,9	50,1	50,2	50,4	59,6	59,3	58,8	63,6	62,6	61,4	66,5	64,5	62,7
	 Anschluss "Pfosten" 2x L-Winkel 13/30/08 Anschluss "Wand" 2x L-Winkel 13/30/08 Wandverjüngungsdicke 47 mm 		52	50	50	50	59	58	57	62	60	59	64	62	60

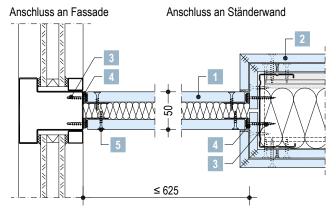
Dämmstoffe von Knauf Insulation.

Beispiel:

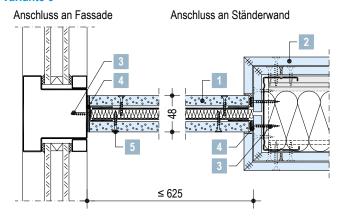
Resultierendes Schalldämm-Maß R_w = 57,7 dB.

Hinweise

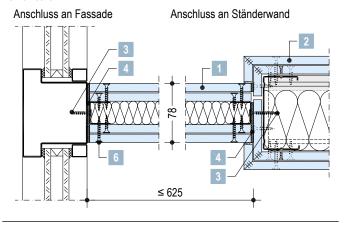
Hinweise auf Seite 6 beachten.



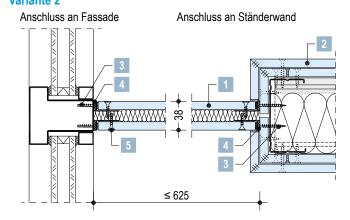
Ausführungsdetails

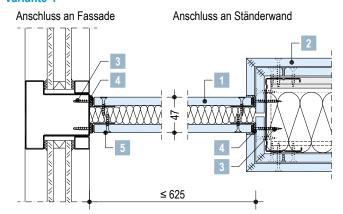

Horizontalschnitte I Maße in mm

Details

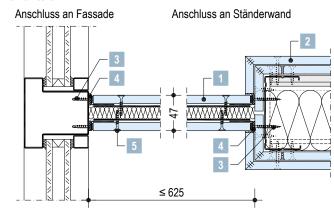

Variante 1

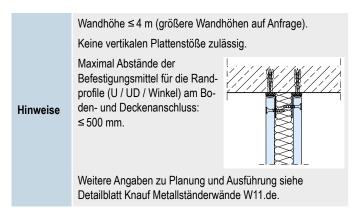
Variante 3


Variante 5


Legende:

- 1 Wandverjüngung Aufbau siehe Seite 69 und 70
- 2 Metallständerwand mit Fugenschnitt
- 3 Geeignetes Befestigungsmittel: Abstand ≤ 500 mm
- 4 Geeignete Abdichtung z. B. Trennwandkitt
- 5 Schnellbauschraube TB
- 6 Schnellbauschraube TN


Variante 2



Variante 4

Variante 6

Schallschutztechnische Aufrüstung bestehender Metallständerwände

Aufrüstung von Bestandswänden

Schallschutzverbesserung von Ständerwänden

Schallschutztechnische Aufrüstung bestehender Ständerwände

Durch zusätzliche Beplankungslagen und/oder Vorsatzschalen

Bei der Sanierung besteht oftmals die Aufgabe darin, im Bestand vorhandene Ständerwände schallschutztechnisch zu verbessern. Bauliche Maßnahmen zur Schallschutzverbesserung müssen dabei auf folgende Einflußfaktoren abzielen:

- Verbesserung der Federwirkung der Unterkonstruktion bei steifer Unterkonstruktion (Einfach- Holzständer), z. B. durch Aufbringen von federnden Schienen (Federschienen).
- Ersatz oder Ergänzung (Aufdopplung) der Beplankung mit biegeweichen Platten (z. B. 12,5 mm Diamant).
- Vergrößerung des Hohlraumes zwischen den Platten (evtl. in Verbindung mit Maßnahmen zur Verbesserung der Federwirkung, z. B. durch Federschienen).
- Einbringen von offenporigem Dämmstoff in den Hohlraum (vorzugsweise 80 % Hohlraumfüllung), z. B. mit Glaswolle.
- Mögliche Effekte sind in Tab. WA. 1 zusammengefasst.

Bei Bestandswänden in Metallständerbauweise mit einfacher Beplankung werden bereits mit Aufdoppelung der Plattenlagen der Beplankung je nach Plattenqualität (Biegeweichheit, Masse) und Wandausführung gute Verbesserungen erreicht.

Effektiv mit einem sehr hohen Verbesserungspotential ist bei steifen Konstruktionen, nicht nur bei Holzständern sondern evtl. auch bei Metallprofilen mit geringerer Federwirkung, die Anordnung von Federschienen (alternativ CD-Profil mit Direktschwingabhänger) auf eine Ständerseitenebene.

In den Tab. WA. 2 und 3 ist am Beispiel einer Metallständerwand mit einem Ausgangswert von R_w = 49,7 dB das Verbesserungspotential dieses Wertes aufgezeigt. Um mit möglichst schlanken Konstruktionen eine deutliche Verbesserung der Schallschutzqualität zu bewirken, sollte für diese Anwendungsfälle Knauf Silentboard mit einem Flächengewicht von ca. 17,5 kg/m² eingesetzt werden. In Kombination mit entsprechenden Entkoppelungsmaßnahmen sind somit Verbesserungen von ΔR = 6 bis 30 dB möglich.

Schallschutzverbesserung von Ständerwänden im Bestand

Tab. WA. 1: Mögliche Schallschutzverbesserung (Prognosewerte) durch Aufrüstung von Leichtbauwänden im Bestand

Bestand	Konstruktive Ergänzunger	1	Mögliche Schallschutzverbesserung ca. $\Delta R_{\rm w}$	Zeile
Holzständerwand mit einlagiger Beplankung	Aufdopplung mit 2. Plattenla	ge/Seite (12,5 mm Knauf Bauplatte)	3-5 dB	1
(Gipsplatten, Holzfaserplatten, Zementplatten)	Aufdopplung mit 2. Plattenla	ge/Seite (12,5 mm Diamant)	5 – 7 dB	2
	Federschiene 60/27 auf eine	er Ständerseite	12 – 15 dB	3
Holzständerwand ohne Faserdämmstoff	Offenporiger Dämmstoff ca.	80 % Füllung	4 – 8 dB	4
Metallständerwand mit einlagiger Beplankung	Aufdopplung mit 2. Plattenla	ge/Seite (12,5 mm Knauf Bauplatte)	6 – 8 dB	5
(Gipsplatten, Holzfaserplatten, Zementplatten)	Aufdopplung mit 2. Plattenla	ge/Seite (12,5 mm Diamant)	8 – 9 dB	6
	Federschiene 60/27 auf eine	er Ständerseite	4 – 6 dB	7
Metallständerwand ohne Faserdämmstoff	Offenporiger Dämmstoff	ca. 30 % Füllung	4 – 5 dB	8
		ca. 80 % Füllung	8 – 12 dB	9

Aufrüstung von Bestandswänden

Schallschutzverbesserung von Ständerwänden

55.5

(6)

56,4

(7)

57,5

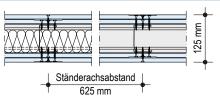
(8)

57,9

(8)

58,9

(9)


60,9

(11)

Schalldämm-Maß R_w (Verbesserungsmaß AR_w in dB)

Schallschutzverbesserung von Ständerwänden im Bestand mit zusätzlicher Direktbeplankung

Tab. WA. 2: Schallschutzverbesserung von Ständerwänden im Bestand

Bestands-/Grundwand G = W112.de mit stegnaher Verschraubung R = 49,7 dB

- 2x 12,5 mm Knauf Bauplatte
- Profil CW 75; a = 625 mm
- Dämmschicht 60 mm Thermolan TI 140 T
- 2x 12,5 mm Knauf Bauplatte
- Befestigung der Beplankung
 - 1. Lage TN 3,5 x 25; a = 750 mm
 - 2. Lage TN 3,5 x 35; a = 250 mm

12,5

12,5

25

25

12,5

12,5

12,5

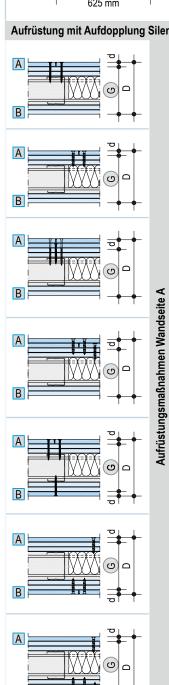
12.5

Dicke zusätzlicher Aufbau d in mm

137,5

137,5

150


150

150

150

Wanddicke D in mm

Aufrüstung mit Aufdopplung Silentboard (horizontal verlegt)

Aufdopplung

- 1x 12,5 mm Silentboard ■ XTN 3,9 x 55; a = 200 mm ■ Flanschmittige oder stegferne Verschraubung
- Aufdopplung
- 1x 12,5 mm Silentboard
- Knauf Schraube "Gipsplatten auf Gipsplatten" 5,5 x 38; a = 200 mm Reihenabstand 500 mm

Aufdopplung

- 2x 12,5 mm Silentboard
- 1. Lage XTN 3,9 x 55; a = 600 mm
- 2. Lage XTN 4,5 x 70; a = 200 mm
- Flanschmittige oder stegferne Verschraubung

Aufdopplung

- 2x 12,5 mm Silentboard
- 1. und 2. Lage Knauf Schraube "Gipsplatten auf Gipsplatten" 5.5×38 ; a = 200 mm, Reihenabstand 500 mm

Aufdopplung

- 1x 12,5 mm Silentboard
- XTN 3,9 x 55; a = 200 mm
- Flanschmittige oder stegferne Verschraubung

Aufdopplung

- 1x 12,5 mm Silentboard
- Knauf Schraube "Gipsplatten auf Gipsplatten" 5,5 x 38; a = 200 mm Reihenabstand 500 mm

Aufdopplung

- 1x 12,5 mm Silentboard
- Knauf Schraube "Gipsplatten auf Gipsplatten" 5,5 x 38; a = 200 mm Reihenabstand 500 mm

Aufdopplung

Aufrüstungsmaßnahmen Wandseite

- 1x 12,5 mm Silentboard
- XTN 3,9 x 55; a = 200 mm
- Flanschmittige oder stegferne Verschraubung

Aufdopplung

- 1x 12,5 mm Silentboard ■ Knauf Schraube
- "Gipsplatten auf Gipsplatten" 5.5 x 38: a = 200 mm Reihenabstand 500 mm

Aufdopplung

- 2x 12,5 mm Silentboard
- "Gipsplatten auf Gipsplatten" 5.5 x 38: a = 200 mm. Reihenabstand 500 mm

12.5 62,7 ■ 1. und 2. Lage Knauf Schraube 162,5 (13)25

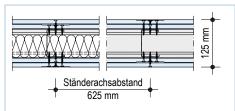
Hinweis

Sollten abweichende Wandaufbauten mit den hier beschriebenen Maßnahmen aufgerüstet werden, dürfen die aufgeführten Schalldämm-Verbesserungsmaße nicht angesetzt werden. Jedoch kann der Absolutwert des Schalldämm-Maßes zur Bewertung angesetzt werden.

S	cha	llscl	hutz-	Nach	weis

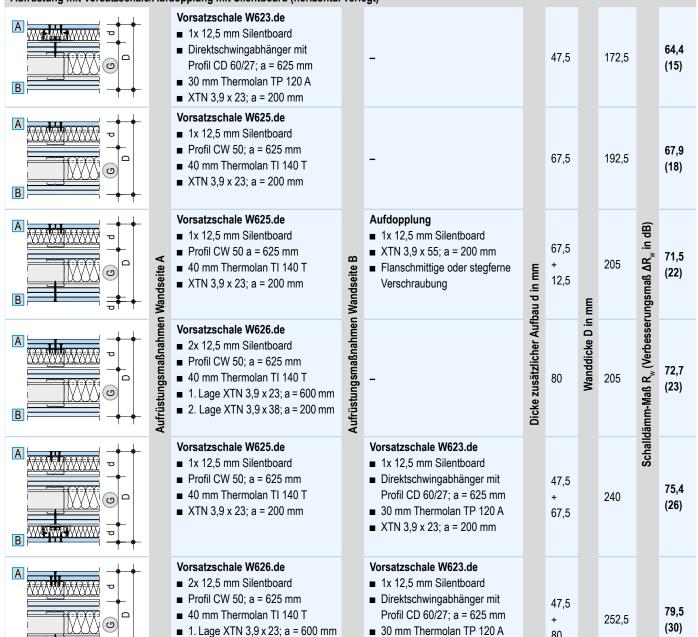
L 043-01.15

Hinweis


Hinweise auf Seite 6 beachten.

Schallschutzverbesserung von Ständerwänden

Schallschutzverbesserung von Ständerwänden im Bestand mit Vorsatzschale/Aufdopplung


Tab. WA. 3: Schallschutzverbesserung von Ständerwänden im Bestand

Bestands-/Grundwand G = W112.de mit R_w = 49,7 dB

- 2x 12,5 mm Knauf Bauplatte
- Profil CW 75; a = 625 mm
- Dämmschicht 60 mm Thermolan TI 140 T
- 2x 12,5 mm Knauf Bauplatte
- Befestigung der Beplankung
 - 1. Lage TN 3,5 x 25; a = 750 mm
 - 2. Lage TN 3,5 x 35; a = 250 mm

Aufrüstung mit Vorsatzschale/Aufdopplung mit Silentboard (horizontal verlegt)

Hinweis

Sollten abweichende Wandaufbauten mit den hier beschriebenen Maßnahmen aufgerüstet werden, dürfen die aufgeführten Schalldämm-Verbesserungsmaße nicht angesetzt werden. Jedoch kann der Absolutwert des Schalldämm-Maßes zur Bewertung angesetzt werden.

■ XTN 3,9 x 23; a = 200 mm

■ 2. Lage XTN 3,9 x 38; a = 200 mm

Schallschutz-Nachweis

L 043-01.15

Hinweis

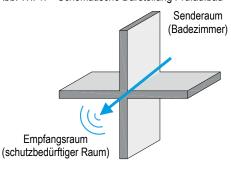
Hinweise auf Seite 6 beachten.

80

Installationsschall

Installationsschall

Gem. DIN 4109-36:2016-07


Einführung

Der Nachweis zur Erfüllung der Anforderung an einen zulässigen Installationsschallpegel kann durch mehrere Wege erfolgen:

- Bau einer Musterinstallationswand nach DIN 4109-36:2016-07.
- Einbau geprüfter Konstruktionen und zusätzlichem Nachweis durch Messung des Installationsschallpegels am fertiggestellten Objekt.

Bei Messungen ist meist der Raum diagonal unter dem Senderaum als Empfangsraum definiert.

Abb. Wl. 1: Schematische Darstellung Prüfaufbau

Die Mindestanforderung nach DIN 4109-1:2018-01 beläuft sich auf einen maximal zulässigen Installationsschallpegel in Wohn- und Schlafräumen von $L_{AE,max,n} \leq 30 \text{ dB}$.

Die erhöhte Anforderung nach Beiblatt 2 zur DIN 4109:1989 beläuft sich auf $L_{AF,max,n} \le 25 \text{ dB}$.

Musterinstallationswand

In Teil 36 der DIN 4109:2016-07 unter Punkt 6.4.4.3.2 wird ein Aufbau einer Musterinstallationswand in Leichtbauweise beschrieben, der ohne weiteren Nachweis zur Erfüllung der Mindestanforderung nach DIN 4109-1:2018-01 angewendet werden kann.

Zur Erfüllung der Mindestanforderung sind sowohl Einfachständerwände W112.de mit Vorwandinstallation, als auch Doppelständerwände W116.de mit Vorwandinstallation oder innenliegender Sanitärinstallation geeignet.

Metallständerwände mit Vorwandinstallationen müssen mindestens folgende Eigenschaften aufweisen:

- Mindestens zweilagig beplankt
- Flächengewicht je Beplankungslage muss mindestens 11 kg/m² aufweisen
- Hohlraumtiefe ≥ 75 mm, d. h. bei Einfachständerwänden mindestens Profil CW 75 bei Doppelständerwänden genügt 2x Profil CW 50,
- Mindestens 60 mm Mineralwolle im Hohlraum mit einem längenbezogenen Strömungswiderstand ≥ 5 kPa · s/m²

Für die Vorwandinstallationen gelten folgende Vorgaben:

- Mindestens zweilagig beplankt
- Flächengewicht je Beplankungslage muss mindestens 11 kg/m² aufweisen
- Hohlraumtiefe der Vorwandinstallation ≥ 75 mm
- Mindestens 60 mm Mineralwolle im Hohlraum mit einem längenbezogenen Strömungswiderstand ≥ 5 kPa · s/m²

Sämtliche Kontaktstellen zwischen der Vorwandinstallation und dem restlichen Baukörper sind körperschallentkoppelt auszuführen.

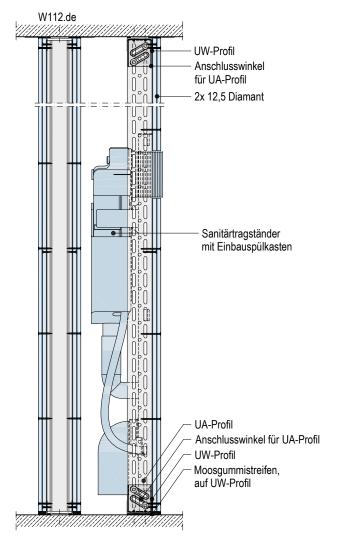
Bei Doppelständerwänden muss darauf geachtet werden, dass sämtliche Rohrleitungen und Schellen an separaten Metallständern befestigt werden, die ohne Kontakt zur Beplankungslage montiert sind.

Betreffend der zulässigen Armaturen und Betrieb von Trinkwasserinstallationen sind die Hinweise der DIN 4109-36:2016-07 Punkt 6.4.4.2.3 zu beachten.

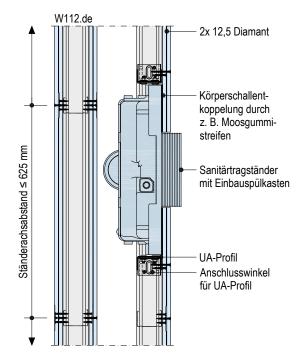
Weiterhin ist auf folgende Punkte zu achten:

- Es dürfen nur Armaturen der Armaturengruppe I nach DIN 4109-1:2018-01 Tabelle 11 verwendet werden.
- Das gesamte Installationssystem muss vom restlichen Gebäudekörper körperschallentkoppelt ausgeführt werden.
- Sanitäre Einrichtungsgegenstände vor der Installationswand bzw. Vorwand sind k\u00f6perschallentkoppelt zu befestigen.
- Rohrleitungen sind durch geeignete Rohrschellen k\u00f6rperschallentkoppelt an die Metallst\u00e4nder zu befestigen.
- Leitungsdurchdringungen sind mittels elastischen Manschetten oder Rohrummantelungen k\u00f6rperschallentkoppelt zu schlie\u00dfen.

Zu beachten ist, dass der Nachweis der durch das Herstellen einer Musterinstallationswand erbracht werden kann nur in Verbindung mit einer Decke mit einer flächenbezogenen Masse m´ \geq 450 kg/m² zulässig ist.

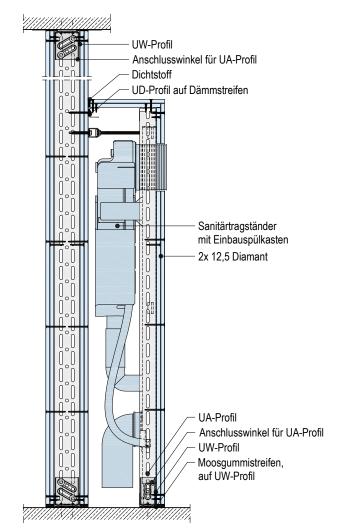


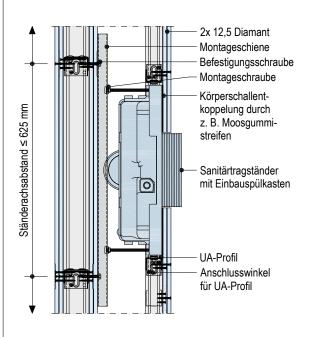
Ausführungsbeispiele Musterinstallationswand


Raumhohe Vorwandinstallation

Schemazeichnungen

Vertikalschnitt


Horizontalschnitt


Teilhohe Vorwandinstallation

Schemazeichnungen

Vertikalschnitt

Horizontalschnitt

Installationsschall

Geprüfte Konstruktionen

Geprüfte Konstruktionen

Hersteller von Sanitärinstallationen haben teilweise umfangreiche Untersuchungen mit eigenen Produkten durchgeführt. Die Vorteile von geprüften Systemen sind zusätzliche Planungssicherheit sowie konkrete Einbauvorgaben. Auch ist es mit geprüften Konstruktionen oftmals möglich, über die Mindestanforderung der DIN 4109-1:2018-01 hinaus erhöhte Anforderungen/Empfehlungen beispielsweise nach Beiblatt 2 zur DIN 4109:1989 oder VDI 4100:2012 zu erfüllen.

Konstruktionen von Geberit

Die Messungen der Installationsgeräusche erfolgen zur Nachweisführung mit den Anforderungen immer vom oben liegenden Raum in den diagonal darunter liegenden Raum. Zusätzlich wurden Messungen in horizontaler Richtung durchgeführt. Dieser Ergebnisse können zum Abgleich mit den Empfehlungen der VDI 4100:2012-10 im eigenen Wohnbereich angewendet werden.

Teilhohe Vorwandinstallation in Trockenbauweise mit raumhohem Installationsschacht vor einer Metallständerwand W112.de

Wandaufbau:

- W112.de Metallständerwand
- Profil CW 75
- 2x 12,5 mm Knauf Bauplatte GKBI

Vorwandinstallation Variante 1:


■ Geberit GIS Beplankung

Vorwandinstallation Variante 2:

■ Geberit Duofix System Beplankung

Installationen:

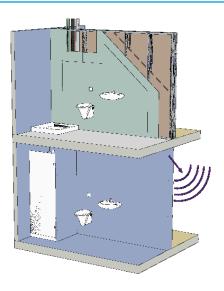
- Geberit GIS Element für:
 - Wand-WC
 - Waschtisch
 - Dusche mit Wandeinlauf

Tab. WI. 1: Teilhohe Vorwandinstallation in Trockenbauweise mit raumhohem Installationsschacht vor einer Metallständerwand W112.de [1]

Fallstrang	Sammelan- schlussleitung	Installations- schallpegel	Anforderung/Empfehlung DIN 4109-1: Beiblatt 2 zur VDI 4100:2012-10					
			2018-07 L _{AF,max,n} ≤ 30 dB(A)	DIN 4109:1989 L _{AF,max,n} ≤ 25 dB(A)	SSt I $\overline{L_{AFmax,nT}}$ $\leq 30 \text{ dB(A)}$	SSt II $\overline{L_{AFmax,nT}}$ $\leq 27 \text{ dB(A)}$	SSt III $ \overline{L_{AFmax,nT}} $ $ \leq 24 \text{ dB(A)} $	
Vorwandinstallation	Variante 1: Geberit G	IS						
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-db20/ Geberit Silent-Pro	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 17 \text{ dB(A)}$	•	•	•	•	•	
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-PP	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 19 \text{ dB(A)}$	•	•	•	•	•	
Geberit Silent-PP	Geberit Silent-PP	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 20 \text{ dB(A)}$	•	•	•	•	•	
Vorwandinstallation	Variante 2: Geberit D	uofix System						
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-db20/ Geberit Silent-Pro	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 20 \text{ dB(A)}$	•	•	•	•	•	
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-PP	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 22 \text{ dB(A)}$	•	•	•	•	•	
Geberit Silent-PP	Geberit Silent-PP	$L_{AF,max,n} = 23 dB(A)$ $\overline{L_{AF,max,nT}} = 21 dB(A)$	•	•	•	•	•	

Hinweis

Detaillierte Informationen zu den verwendeten Produkten, der Verarbeitung und den Randbedingungen können bei der Geberit Vertriebs GmbH angefragt werden.



Wandaufbau:

- W116.de Installationswand
- Profil 2x CW 50
- 2x 12,5 mm Knauf Bauplatte GKBI

Installationen:

- Geberit Duofix Element für:
 - Wand-WC
 - Waschtisch
 - Dusche mit Wandeinlauf

Tab. WI. 2: Installationswand W116.de [1]

Fallstrang	Sammelan-	Installations-		Anfo	orderung/Empfeh	lung	
	schlussleitung	schallpegel	DIN 4109-1: 2018-07 L _{AF,max,n} ≤ 30 dB(A)	Beiblatt 2 zur DIN 4109:1989 L _{AF,max,n} ≤ 25 dB(A)	SSt I $\overline{L_{AFmax,nT}}$ $\leq 30 \text{ dB(A)}$	VDI 4100:2012- SSt II $\overline{L_{AFmax,nT}}$ $\leq 27 \text{ dB(A)}$	SSt III $ \overline{L_{AFmax,nT}} $ $\leq 24 \text{ dB(A)}$
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-db20/ Geberit Silent-Pro	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 21 \text{ dB(A)}$	•	•	•	•	•
Geberit Silent-db20/ Geberit Silent-Pro	Geberit Silent-PP	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 25 \text{ dB(A)}$	•	•	•	•	•
Geberit Silent-PP	Geberit Silent-PP	$\frac{L_{AF,max,n}}{L_{AF,max,nT}} = 26 \text{ dB(A)}$	•	_	•	•	•

Hinweis

Detaillierte Informationen zu den verwendeten Produkten, der Verarbeitung und den Randbedingungen können bei der Geberit Vertriebs GmbH angefragt werden.

Installationsschall

Geprüfte Konstruktionen

Konstruktionen von Rehau

Die Messungen der Installationsgeräusche erfolgen zur Nachweisführung mit den Anforderungen immer vom oben liegenden Raum in den diagonal darunter liegenden Raum.

Teilhohe Vorwandinstallation in Trockenbauweise mit raumhohem Installationsschacht vor einer Metallständerwand W112.de

Wandaufbau:

- W112.de Metallständerwand
- Profil CW 50
- 2x 12,5 mm Knauf Bauplatte GKBI

Vorwandinstallation:

■ Geberit GIS Beplankung

Installationen:

- Geberit Duofix System Element für:
 - Wand-WC
 - Waschtisch

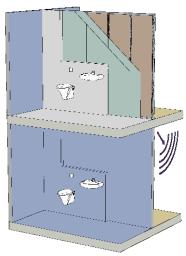
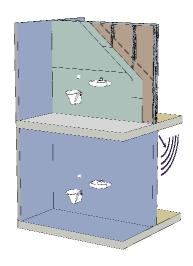


Abb. WI. 2: Teilhohe Vorwandinstallation in Trockenbauweise mit raumhohem Installationsschacht vor einer Metallständerwand W112.de [2]

Steigstrang und	Fallleitung und	Installations-	Anforderung/Empfehlung					
Verteilleitung	Sammelan-	schallpegel	DIN 4109-1:	Beiblatt 2 zur		VDI 4100:2012-10		
	schlussleitung		2018-07	DIN 4109:1989	SSt I	SSt II	SSt III	
			L _{AF,max,n}	L _{AF,max,n}	L _{AFmax,nT}	L _{AFmax,nT}	L _{AFmax,nT}	
			\leq 30 dB(A)	\leq 25 dB(A)	\leq 30 dB(A)	\leq 27 dB(A)	\leq 24 dB(A)	
Rehau RAUTITAN		$L_{AF,max,n} = 19 dB(A)$	•	•		•		
TOTAL TO TO TITAL	RAUPIANO PLUS	$\overline{L_{AFmax,nT}}$ = 15 dB(A)	·			·	·	


Installationswand W116.de

Wandaufbau:

- W116.de Installationswand
- Profil 2x CW 50
- 2x 12,5 mm Knauf Bauplatte GKBI

Installationen:

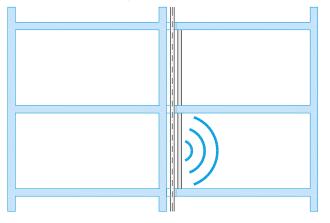
- Geberit Duofix System Element für:
 - Wand-WC
 - Waschtisch
 - Dusche mit Wandeinlauf

Tab. WI. 3: Installationswand W116.de [2]

Steigstrang und	Fallleitung und	Installations-	Anforderung/Empfehlung					
Verteilleitung	Sammelan- schlussleitung	schallpegel	DIN 4109-1: 2018-07 L _{AF,max,n} ≤ 30 dB(A)	Beiblatt 2 zur DIN 4109:1989 L _{AF,max,n} ≤ 25 dB(A)	SSt I $\overline{L_{AFmax,nT}}$ $\leq 30 \text{ dB(A)}$	VDI 4100:2012-10 SSt II $\overline{L_{AFmax,nT}}$ $\leq 27 \text{ dB(A)}$	SSt III $ \overline{L_{AFmax,nT}} $ $\leq 24 \text{ dB(A)}$	
Rehau RAUTITAN		$\frac{L_{AF,\text{max},n}}{L_{AF,\text{max},nT}} = 22 \text{ dB(A)}$		•	•	•	•	

Hinweis

Detaillierte Informationen zu den verwendeten Produkten, der Verarbeitung und den Randbedingungen können bei der REHAU AG + Co angefragt werden.


Abwasserleitungen mit Schachtwandkonstruktionen

Abwasserleitungen mit Schachtwandkonstruktionen

Sollten Abwasserleitungen durch einen schutzbedürftigen Raum geführt werden, sind auch in diesem Fall die Anforderungen an einen maximal zulässigen Installationsschallpegel einzuhalten. Daher wurde in Kooperation mit Rehau Messungen von Installationsschächten an einer Leichtbautrennwand sowie einer Massivwand im Fraunhofer Institut für Bauphysik durchgeführt.

Geprüft wurden Schachtwandkonstruktionen mit drei unterschiedlichen Plattentypen teilweise mit und ohne Mineralwollhinterlegung.

Abb. WI. 3: Schematische Darstellung des Prüfaufbaus im Fraunhofer Institut für Bauphysik IBP

Die maßgebliche Größe zum Vergleich der Anforderungen nach DIN 4109 bzw. VDI 4100 ist der A-bewertete Maximalwert $L_{\mathsf{AFmax},n}$ bzw. $\overline{L_{\mathsf{AFmax},n}}$. Aus Gründen der Reproduzierbarkeit wurden bei den Installationsleitungen mit Schachtwandkonstruktionen jedoch nicht der Maximalwert, sondern der zeitlich und räumlich gemittelte Pegel $L_{\mathsf{AFeq},n}$ bzw. $\overline{L_{\mathsf{AFeq},nT}}$ gemessen. Nach Aussagen des Fraunhofer Instituts für Bauphysik beläuft sich die Differenz zwischen den zeitlich und räumlich gemittelten Pegeln und den Maximalpegeln im Normalfall auf 2-3 dB.

Tab. WI. 4: Schachtwandkonstruktionen an Massivwand mit einer flächenbezogenen Masse von ca. 220 kg/m²

Massivwand mit einer flächenbezogenen Masse von ca. 220 kg/m²	Schachtwand- konstruktionen	Durchfluss- volumen	0,5 l/s	1,0 l/s	2,0 l/s	4,0 l/s	Zeile
RAUPIANO PLUS	■ RAUPIANO PLUS ■ 2x 12,5 mm Knauf Bauplatte ■ Ohne Mineralwolle	L _{AFeq,n} In Anlehnung an DIN 4109	19 dB(A)	22 dB(A)	25 dB(A)	28 dB(A)	4
2x 12,5 mm Knauf Bauplatte GKB		L _{AFeq,nT} In Anlehnung an VDI 4100	16 dB(A)	20 dB(A)	23 dB(A)	26 dB(A)	1
RAUPIANO PLUS 2 x 12,5 mm Knauf Bauplatte		L _{AFeq,n} In Anlehnung an DIN 4109	<10 dB(A)	13 dB(A)	15 dB(A)	20 dB(A)	0
40 mm Knauf Insulation Trittschall-Dämmplatte TP 115 2x 12,5 mm Knauf Bauplatte GKB	■ 40 mm Knauf Insulation Trittschall-Dämmplat- te TP115	L _{AFeq,nT} In Anlehnung an VDI 4100	<10 dB(A)	11 dB(A)	13 dB(A)	18 dB(A)	2
RAUPIANO PLUS	Out 10 F mans Cilenthese ad		13 dB(A)	17 dB(A)	20 dB(A)	23 dB(A)	2
2x 12,5 mm Silentboard	2x 12,5 mm SilentbroadOhne Mineralwolle	L _{AFeq,nT} In Anlehnung an VDI 4100	11 dB(A)	14 dB(A)	17 dB(A)	21 dB(A)	3

Hinweis

Detaillierte Informationen zu den verwendeten Produkten, der Verarbeitung und den Randbedingungen können bei der REHAU AG + Co angefragt werden.

Installationsschall von Metallständerwänden

Abwasserleitungen mit Schachtwandkonstruktionen

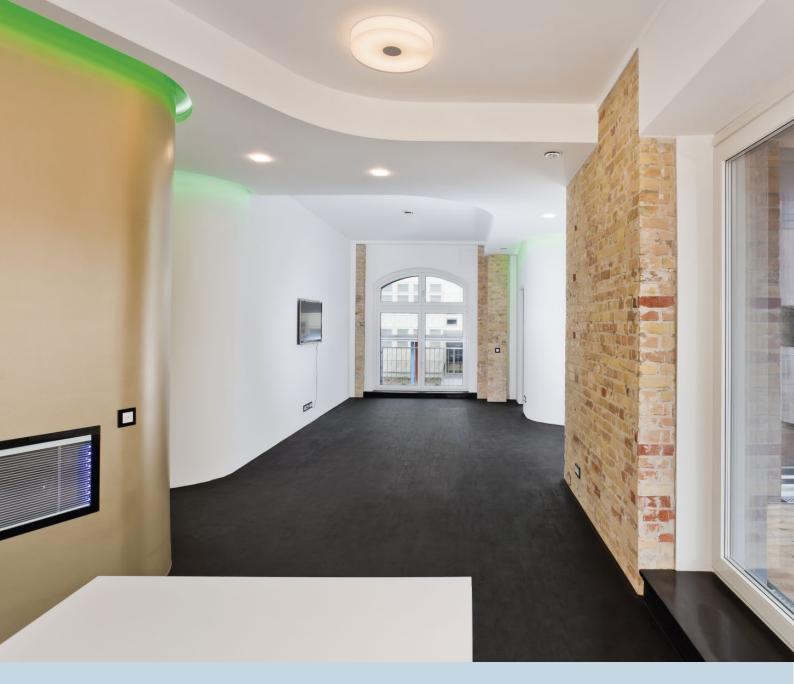
Tab. WI. 5: Schachtwandkonstruktionen an Metallständerwand W112.de

Aufbau Metallständerwand: W112.de ■ 25 mm Massivbauplatte + 12,5 mm Diamant ■ Profil CW 75; a = 625 mm Schalldämm-Maß der Trennwand alleine R _w = 66,2 dB	Schachtwand- konstruktionen	Durchfluss- volumen	0,5 l/s	1,0 l/s	2,0 l/s	4,0 l/s	Zeile
	■ RAUPIANO PLUS ■ 2x 12,5 mm	L _{AFeq,n} In Anlehnung an DIN 4109	21 dB(A)	26 dB(A)	28 dB(A)	31 dB(A)	
RAUPIANO PLUS 2x 12,5 mm Knauf Bauplatte GKB	Knauf Bauplatte ■ Ohne Mineralwolle	T _{AFeq,nT} In Anlehnung an VDI 4100	20 dB(A)	25 dB(A)	27 dB(A)	30 dB(A)	1
RAUPIANO PLUS	■ RAUPIANO PLUS ■ 2x 12,5 mm Knauf Bauplatte	L _{AFeq,n} In Anlehnung an DIN 4109	13 dB(A)	18 dB(A)	23 dB(A)	27 dB(A)	2
40 mm Knauf Insulation Trittschall-Dämmplatte TP 115 2x 12,5 mm Knauf Bauplatte GKB	■ 40 mm Knauf Insulation Trittschall-Dämmplatte TP115 Trittschall-Dämmplate In Air an V	L _{AFeq,nT} In Anlehnung an VDI 4100	12 dB(A)	17 dB(A)	21 dB(A)	25 dB(A)	2
RAUPIANO PLUS	■ RAUPIANO PLUS	L _{AFeq,n} In Anlehnung an DIN 4109	19 dB(A)	24 dB(A)	26 dB(A)	29 dB(A)	3
2x 12,5 mm Diamant	■ 2X 12,3 Hirr Diamant Ohne Mineralwolle	L _{AFeq,nT} In Anlehnung an VDI 4100	18 dB(A)	23 dB(A)	25 dB(A)	28 dB(A)	J
RAUPIANO PLUS	■ RAUPIANO PLUS ■ 2x 12,5 mm Diamant ■ 40 mm Knauf Insulation	L _{AFeq,n} In Anlehnung an DIN 4109	14 dB(A)	17 dB(A)	20 dB(A)	24 dB(A)	4
40 mm Knauf Insulation Trittschall-Dämmplatte TP 115 2x 12,5 mm Diamant	Trittschall-Dämmplat- te TP115	L _{AFeq,nT} In Anlehnung an VDI 4100	13 dB(A)	16 dB(A)	19 dB(A)	23 dB(A)	4
PAUDIANO DI LIO	■ RAUPIANO PLUS	L _{AFeq,n} In Anlehnung an DIN 4109	17 dB(A)	22 dB(A)	24 dB(A)	27 dB(A)	5
RAUPIANO PLUS 2x 12,5 mm Silentboard	2x 12,5 mm SilentbroadOhne Mineralwolle	L _{AFeq,nT} In Anlehnung an VDI 4100	16 dB(A)	20 dB(A)	23 dB(A)	26 dB(A)	5

Da die geprüfte Installationswand auch den Anforderungen einer Wohnungstrennwand genügt, kann diese unter Beachtung der flankierenden Bauteile und unter Verwendung der geprüften Installationsleitungen inkl. Befestigungsmittel auch zur Einhaltung der Anforderungen in horizontaler Richtung, d. h. für nebeneinander liegende Räume verwendet werden.

Hinweis

Detaillierte Informationen zu den verwendeten Produkten, der Verarbeitung und den Randbedingungen können bei der REHAU AG + Co angefragt werden.


Installationsschall von Metallständerwänden

Abwasserleitungen mit Schachtwandkonstruktionen

Tab. WI. 6: Entkoppelte Schachtwandkonstruktion an Metallständerwand W112.de

Aufbau Metallständerwand: W112.de ■ 25 mm Massivbauplatte + 12,5 mm Diamant ■ Profil CW 75; a = 625 mm Schalldämm-Maß der Trennwand alleine R _w = 66,2 dB Entkopplung ■ Federschiene ■ 1x 12,5 mm Diamant	Schachtwand- konstruktionen	Durchfluss- volumen	0,5 l/s	1,0 l/s	2,0 l/s	4,0 l/s	Zeile
Federschiene 30 mm Knauf Insulation Trittschall-Dämmplatte TP 120A RAUPIANO PLUS	■ RAUPIANO PLUS ■ 2x 12,5 mm Diamant	L _{AFeq,n} In Anlehnung an DIN 4109	10 dB(A)	< 14 dB(A)	18 dB(A)	22 dB(A)	4
40 mm Knauf Insulation Trittschall-Dämmplatte TP 115 2x 12,5 mm Diamant	■ 40 mm Knauf Insulation Trittschall- Dämmplatte TP115	L _{AFeq,nT} In Anlehnung an VDI 4100	< 10 dB(A)	< 13 dB(A)	17 dB(A)	21 dB(A)	1

Da die geprüfte Installationswand auch den Anforderungen einer Wohnungstrennwand genügt, kann diese unter Beachtung der flankierenden Bauteile und unter Verwendung der geprüften Installationsleitungen inkl. Befestigungsmittel auch zur Einhaltung der Anforderungen in horizontaler Richtung, d. h. für nebeneinander liegende Räume verwendet werden.

Konstruktive und technologische Anforderungen und Besonderheiten

Innenwände mit Anforderungen an den Schallschutz

Ständerwände mit Anforderungen an den Schallschutz

Das Erreichen der in den Tabellen angegebenen bewerteten Schalldämm-Maße setzt eine fachgerechte Montage der Trennwände voraus. Konstruktive Veränderungen im Wandaufbau sind zu vermeiden und ggf. nur in Absprache mit der Knauf Gips KG durchzuführen.

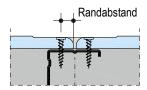
Bei der Montage der Wände ist besonders zu beachten:

■ Luftdichte Ausführung von Anschlüssen bei unebenen Anschlussbauteilen ist vorzugsweise Trennwandkitt als Dichtungsmaterial zu verwenden; evtl. ist der Abstand der Befestigungspunkte der mit Dichtungsmaterial belegten Anschlussprofile an die flankierenden Bauteile gegenüber der Standardvorgabe zu reduzieren.

Die dichte Ausführung von gleitenden Anschlüssen erfordert eine sehr große Sorgfalt. Bei gleitenden Deckenanschlüssen mit Distanzplattenstreifen ist besonders auf die Abdichtung der Beplankung zum Anschluss Metallprofil/Gipsplattenstreifen zu achten (Abb. WK. 2). Anschluss- und Ausführungsfehler können zu einem erheblichen Einbruch in der Schalldämmung der Gesamtkonstruktion führen

Abb. WK. 2: Gleitender Deckenanschluss einer Metallständerwand

Schrauben um eine Umdrehung lösen


Abb. WK. 3:

Holzständerwand mit

Entkopplung durch

Federschienen

- Einbauten und Tragkonstruktionen, die die Wand aussteifen und insbesondere anliegend oder befestigt an beiden Beplankungsseiten sind, können als Schallbrücken wirken und führen i. d. R. zur Verschlechterung der Schalldämmung (Sicherheitsabschläge vornehmen) Steck- und Schalterdosen führen nicht zur Verschlechterung der Schalldämmung bei
 - Einseitigen Einbau
 - Doppelseitigen Einbau bei Versatz um mind. 300 mm, besser ein Ständerwandfeld, bei Wänden mit R_{wR} bis 60 dB (dichter fachgerechter Einbau und ordnungsgemäße Hohlraumdämpfung ist Voraussetzung); bei dichter Kapselung der Dosen ist ein geringerer Versatz ohne Verschlechterung der Schalldämmung zulässig.
- Wandverjüngungen, Wandnischen usw. können zur Verschlechterung der Schalldämmung führen (Ausführungen zu "zusammengesetzte Wände" und "Wandverjüngungen" Seite 69 bis 71 beachten).
- Luftdichte Revisonklappen führen bei fachgerechtem Einbau und durchgehender Dämmung nicht zur Verschlechterung der Schalldämmung.
- Für optimalen Schallschutz Schrauben möglichst weit entfernt vom Profilsteg, d. h. möglichst nah am Mindestrandabstand (10 mm kartonummantelte Kante, 15 mm geschnittene Kante) anordnen.

Plattenstoß mittig auf Profilflansch anordnen.

Vorsatzschalen mit Anforderungen an den Schallschutz

- Bei der "Aufrüstung" von Wänden mit Vorsatzschalen sind zur Gewährleistung der mit dieser Maßnahme gewünschten neuen Funktion dieser Wand (i. d. R. Trennung von zwei Nutzungseinheiten) insbesondere die Brandschutzforderungen (Feuerwiderstand) bereits in der Planungsphase zu be-
- Das Schalldämm-Maß bzw. die Flankenschalldämm-Maße der massiven Bauteile (Trennwand und flankierende Bauteile) sind aus der flächenbezogenen Masse dieser Bauteile zu bestimmen; für zusammengesetzte Bauteile (z. B. Steine und Mörtelfugen, Fachwerkwände) ist dabei die mittlere Rohdichte zu verwenden.
 - Zur Beachtung: Lochsteinen, die nicht als ein homogenes, einschaliges Bauteil angesehen werden können, muss nach DIN 4109-32:2016-07 das Schalldämm-Maß durch allgemeine bauaufsichtliche Zulassungen bzw. europäische technische Bewertungen oder durch bauakustischen Prüfungen nachgewiesen werden.
- Dichtheit von massiven Bestandswänden ist Voraussetzung für einen guten Schallschutz; evtl. bei undichten Wänden einseitigen Putz auftragen.
- Steck- und Schalterdosen wirken sich nicht auf die Schalldämmung aus.
- Bei freistehenden Vorsatzschalen Einbauhöhen beachten; mit punktweise befestigten Vorsatzschalen sind bei schlanker Bauweise größere Bauhöhen umsetzbar.
- Abstand zwischen Vorsatzschale (Beplankungslage) und der Bestandswand sollte bei Vorsatzschalen mit Unterkonstruktion mind. 40 mm betragen (Optimum aus Raumbedarf und Schallschutzverbesserung); mind. 80 % mit Faserdämmstoff (ohne den Dämmstoff wesentlich zu komprimie-
 - Zur Beachtung: keinen geschlossenzelligen Dämmstoff (z. B. Styropor) im Hohlraum bei Vorsatzschalen einbringen.
- Die resultierende Schalldämmung wird durch das "schwächste Kettenglied" in der Konstruktionseinheit Trennwand und flankierende Bauteile (Wände, Decken) bestimmt; die erreichbare Schalldämmung kann nie größer sein als die Schalldämmung des schlechtesten Bauteiles zur Beachtung: in der Regel sind bei Anforderungen einer Schallschutzverbesserung einer Trennwand auch die flankierenden Bauteile durch Vorsatzschalen zu
- Bei Vorsatzschalen vor trennenden und flankierenden Bauteilen erst die Vorsatzschale vor dem Trennbauteil erstellen: dann Vorsatzschalen der flankierenden Bauteile (auch Unterdecken) beidseitig in gesamter Raumlänge ausführen und an Trennbauteil anschließen.

Abb. WK. 4: Vorsatzschale bei Trennwand mit flankierendem Bauteil

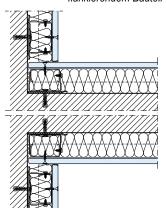
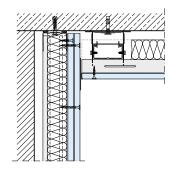



Abb. WK. 5: Vorsatzschale mit Unterdecke

Hinweis

Hinweise auf Seite 6 beachten.

87

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 Iphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

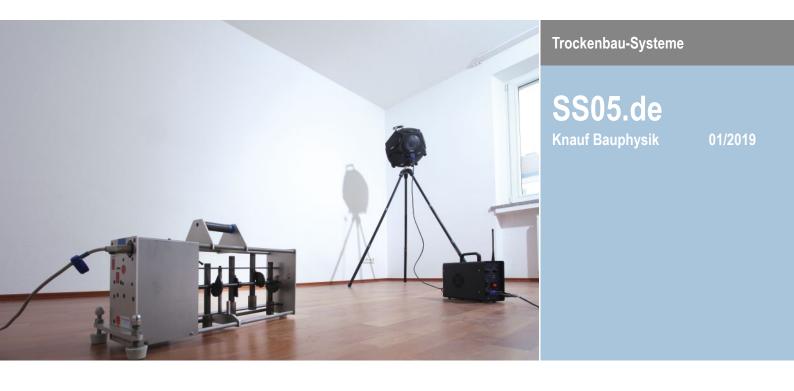
Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke Knauf PFT

Maschinentechnik und Anlagenbau


Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

SS04.de/ger/01.19/0/OD

Schallschutz mit Knauf Decken

Inhalt

Nutzungshinweise	
Hinweise	4
Hinweise zum Dokument	4
Bestimmungsgemäßer Gebrauch von Knauf Systemen	4
Hinweise zum Schallschutz	
Brandschutz	4
Quellennachweis	4
Einleitung	
Decken	6
Massiv- und Holzbalkendecken mit Estrichen und Unterdecken	6
Massivdecken mit Estrich und/oder Unterdecken	
Geprüfte Luft- und Trittschalldämmung mit Knauf Plattendecken	8
Geprüfte Luft- und Trittschalldämmung mit Knauf Freitragenden Decken	10
Luft- und Trittschalldämmung mit Knauf Akustik-Decken	13
Holzbalkendecken mit Estrich und/oder Deckenbekleidungen/Unterdecken	
Geprüfte Luft- und Trittschalldämmung	19
Prüfaufbau – Holzbalkendecke B – leichter Einschub	23
Prüfaufbau – Holzbalkendecke C – schwerer Einschub – z. B. teilentkernte Altbaudecke	26
Prüfaufbau – Holzbalkendecke B – leichter Einschub – als Altbausubstanz	29
Prüfaufbau – Holzbalkendecke C – schwerer Einschub – als Altbausubstanz	31
Konstruktionsbedingte Korrekturwerte	32
Konstruktive und technologische Anforderungen und Besonderheiten	
Massivdecken	34
Holzbalkendecken	35

Nutzungshinweise

Hinweise

Hinweise zum Dokument

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Weitere Broschüren des Knauf Schallschutzordners: Bauakustik

- Grundlagen SS01.de
- Anforderungen an die Bauteile SS02.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Innenwände SS04.de
- Außenbauteile SS06.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Detailblätter

- Knauf Plattendecken D11.de
- Knauf Freitragende Decken D13.de
- Knauf Cleaneo Akustik-Plattendecken D12.de
- Knauf Cleaneo Akustik-Kassettendecken D14.de
- Knauf Holzbalkendecken-Systeme D15.de
- Knauf Fertigteilestrich F12.de

Broschüren

- Trockenbaulösungen in Feucht- und Nassräumen FN01.de
- Knauf Sicherheitstechnik ST01.de
- Knauf Diamant-Systeme DIA01.de
- Knauf Silentboard-Systeme SIB01.de
- Knauf Fireboard-Systeme FIB01.de

Ordner

■ Brandschutz mit Knauf BS1.de

Bestimmungsgemäßer Gebrauch von Knauf Systemen

Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. zugelassen sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

Hinweise zum Schallschutz

R_w = Bewertetes Schalldämm-Maß in dB ohne Schallübertragung über flankierende Bauteile

-n,w = Bewerteter Norm-Trittschallpegel in dB ohne Schallübertragung über flankierende Bauteile

C = Spektrum-Anpassungswerte für den Luftschall bzw. Werte in dB, die zu Einzahlangaben addiert werden können, um

 ${\bf C}_{{\bf tr}}$ Merkmale bestimmter Schallspektren zu berücksichtigen.

 $\begin{array}{ll} \textbf{C}_{\text{l}} & = \text{Spektrum-Anpassungswerte für den Trittschall} \\ \text{bzw.} & \text{Werte in dB, die zu Einzahlangaben addiert werden können, um} \\ \textbf{C}_{\text{l.50-2500}} & \text{Merkmale bestimmter Schallspektren zu berücksichtigen.} \\ \end{array}$

 $\Delta R_{w,heavy}$ = Bewertetes Schalldämm-Verbesserungsmaß in Verbindung mit einer Norm-Bezugsdecke mit einer flächenbezogenen Masse von 350 \pm 50 kg/m² nach DIN EN ISO 10140-5 Anhang B

 $\Delta L_{n.w}$ = Bewertete Trittschallminderung in dB

calc = Prognostizierter Wert

Index R = Dient zur Unterscheidung der Rechenwerte von den Prüfstandswerten

Dämmschicht **G** (Mineralwolle-Dämmschicht nach EN 13162, nichtbrennbar), längenbezogener Strömungswiderstand nach

DIN EN 29053; r \geq 5 kPa \cdot s/m²; z. B. Knauf Insulation Trennwand-Dämmplatte TI 140 T

Die Nachweisführung der neuen DIN 4109:2018-01 erfolgt nicht mit den Rechenwerten $R_{w,R}$ bzw. $L_{n,w,R}$, sondern mit den Prüfstandwerten $R_w/L_{n,w}$ auf eine Nachkommastelle genau. Erst am Ende der Prognose unter Berücksichtigung aller an der Übertragung beteiligten Begrenzungsflächen (Flanken) wird in Abhängigkeit der Art des trennenden Bauteils eine Prognoseunsicherheit mit einbezogen.

Übergangsweise werden in den Knauf Detailblättern sowohl die Prüfstandswerte als auch die bisher ausgewiesenen Rechenwerte angegeben.

Werden anstelle der bewerteten Prüfstandswerte Werte angegeben, die auf rechnerischen Prognosen basieren bzw. von gemessenen Prüfstandswerten abgeleitet wurden, erfolgt die Angabe ohne Nachkommastelle.

Brandschutz

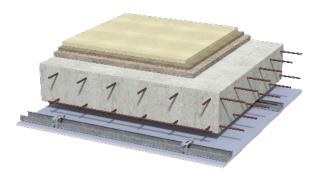
Hinweise

Für den Brandschutz sind ggf. zusätzliche Maßnahmen (z. B. zusätzliche Anforderungen an die Dämmschicht) erforderlich. Entsprechende Angaben im Brandschutzordner/Detailblatt des jeweiligen Systems sind zu berücksichtigen.

Informationen zu den Verwendbarkeitsnachweisen finden Sie in den Knauf Detailblättern der entsprechenden Systeme.

Quellennachweis

- [1] DIN 4109-34:2016-07
- 2] Krämer, Pfau, Tichelmann Sanierung mit Trockenbau Intelligente Lösungen für Brand-, Schall-, Wärme- und Feuchteschutz mit Trockenbausystemen Knauf Gips KG Iphofen, 2010



Einleitung

Massiv- und Holzbalkendecken mit Estrichen und Unterdecken

Betondecke

Holzbalkendecke

Unterdecken und schwimmende Estriche

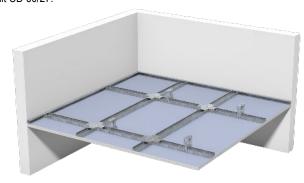

Die Luft- und Trittschalldämmung gebrauchsfertiger Decken wird durch schwimmende Estriche oder andere geeignete schwimmende Böden in Kombination mit etwaigen Unterdecken wesentlich beeinflusst.

Konstruktiv besonders gut geeignet sind nachfolgende Knauf Konstruktionen:

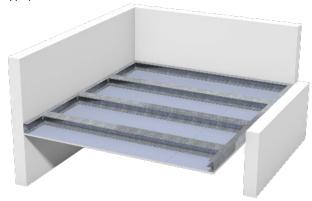
- Schwimmende Estriche nach DIN 18560-2 aus Knauf Fließestrichen, Mindestdicke 35 mm (ca. 80 kg/m²).
- Schwimmende Fertigteilestriche, vorzugsweise Knauf Brio, bestehend aus 18 oder 23 mm dicken Gipsfaserelementen mit 10 mm Holzweichfaserplatte oder Mineralwolle-Trittschalldämmplatte.
- Abgehängte und freitragende Unterdecken mit Gipsplattenbeplankung siehe Variante 1 bis 4.

Variante 1

Plattendecke mit Unterkonstruktion als abgehängter einfacher Profilrost mit CD 60/27.


Variante 2

Plattendecke mit Unterkonstruktion als abgehängter doppelter Profilrost mit CD 60/27. Weitspannende Ausführung mit UA-Grundprofilen möglich.


Variante 3

Plattendecke mit Unterkonstruktion als abgehängter niveaugleicher Profilrost mit CD 60/27.

Variante 4

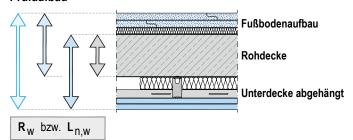
Freitragende Unterdecke mit Unterkonstruktion aus CW-Profilen oder CW-Doppelprofilen.

Massivdecken mit Knauf Estrich-Systemen und/oder Knauf Plattendecken

Geprüfte Luft- und Trittschalldämmung

In Tab. FM 1 bis 4, Seite 8 bis Seite 11 sind umfangreiche Messergebnisse, gemessen in einem nebenwegfreien Prüfstand, an einer Massivdecke mit 320 kg/m² Flächenmasse in Kombination mit Knauf Unterdecken und Knauf Estrich-Systemen zusammengestellt. Diese Tabellenwerte können für den Nachweis der Trittschalldämmung verwendet werden. Bei abweichender Deckenmasse kann dabei vereinfachend folgende Korrektur angesetzt werden:

- Deckenmasse > 320 kg/m² : keine Abminderung (L_{n w} wird besser)
- Deckenmasse < 320 bis ≥ 250 kg/m²: 5 dB Abminderung


Da die Systemaufbauten schallschutztechnisch sehr hochwertig sind, ist es ggf. sinnvoll die flankierenden Massivbauteile mit biegeweichen Vorsatzschalen auszustatten. Eine Flankenkorrektur des berechneten Wertes ist damit nicht erforderlich, da die Flankenübertragungen vernachlässigbar klein sind.

Geprüfte Luft- und Trittschalldämmung mit Knauf Plattendecken

Prüfaufbau

Unterdecke abgehängt D112.de

- Tragprofil CD 60/27
- Dämmschicht 30 mm
 (z. B. Knauf Insulation Akustik-Dämmplatte TP 120 A)
- Direktschwingabhänger
- Beplankung

Anforderungen an die Dämmschicht (z. B. von Knauf Insulation):
Mineralwolle-Dämmschicht 30 mm nach DIN EN 13162;
längenbezogener Strömungswiderstand nach DIN EN 29053: r ≥ 5 kPa·s/m²

Luft- und Trittschalldämmung

Tab. FM. 1: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Fußbode	en	Fußbodenauf Knauf Fertigt	Rohdecke + Fußbodenaufbau Fußbodenaufbau Knauf Fertigteilestrich 1x 18 mm Brio WF 2x 23 mm Brio 20 mm Knauf Insulation Trittschall-Dämmplatte TP-GP				Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10		
							<u> </u>	WWW.WW		
	Schalldämm- Maß R_w (C I C _{tr}) $R_{w,R}$ dB	$\label{eq:local_norm} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\text{I}} \textbf{I} \textbf{C}_{\text{I},50\text{-}2500}) \\ & \textbf{L}_{\text{n,w,R}} \\ & \text{dB} \end{split}$	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:local_norm} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & \textbf{L}_{\text{n,w}} \\ & (\text{C}_{\text{I}} \ \text{I} \ \text{C}_{\text{I},50\text{-}2500}) \\ & \textbf{L}_{\text{n,w,R}} \\ & \text{dB} \end{split}$	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:Normtritt-Schallpegel} \begin{aligned} & & L_{n,\mathbf{w}} \\ & & L_{1,50} \\ & & (C_1 \ \ C_{1,50-2500}) \\ & & L_{n,\mathbf{w},R} \\ & & dB \end{aligned}$	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\begin{tabular}{ll} Normtritt-\\ schallpegel & $L_{n,w}$\\ (C_l \mid C_{l,50\text{-}2500}) & \\ L_{n,w,R} & \\ dB & \\ \end{tabular}$		
Ohne Unterdecke (alle Maße in mm)	53 (-2 I -6) 51	80 (-12 I -12) 82	58 (-2 I -7) 56	57 (0 I 0) 59	62 (-2 I -7) 60	49 (1 4) 51	65 (- I -) 63	41 (- l -) 43		
Rohdecke + Unterdecke D112.	de <	\Longrightarrow	Rohdecke + F	ußbodenaufbau	+ Unterdecke		$\longrightarrow \hspace{0.2cm} \rangle$			
■ 12,5 mm Diamant	70 (-3 I -8) 68	55 (-5 I -1) 57	71 ¹⁾ (-3 I -10) 67 ¹⁾	44 (2 4) 48 ⁴⁾	74 ¹⁾ (-6 I -15) 70 ¹⁾	39 (5 12) 43 ⁴⁾	70 ²⁾ (- I -) 68 ²⁾	30 ¹⁾ (- l -) 34 ¹⁾		
■ 12,5 mm Silentboard	72 (-2 I -7) 70	50 (-3 2) 52	74 ¹⁾ (-3 I -10) 70 ¹⁾	41 (1 I 5) 45 ⁴)	78 ¹⁾ (-6 I -14) 74 ¹⁾	34 (5 I 13) 38 ⁴⁾	72 ²⁾ (- I -) 70 ²⁾	26 ¹⁾ (– I –) 30 ¹⁾		
■ 15 mm Diamant	$70^{3)}$ (-3 -8) ≥ 68 ³⁾	55 ³⁾ (-5 I -1) ≤ 57 ³⁾	72 (-3 I -9) 70	45 (2 7) 47	$74^{1)3)}$ (-5 I -15) ≥ $70^{3)}$	39 ³⁾ (5 I 12) ≤ 43 ³⁾⁴⁾	$70^{2)}$ (-I-) ≥ $68^{3)}$	30 ¹⁾³⁾ (- l -) ≤ 34 ³⁾		

- 1) Berechnung in Anlehnung an das detaillierte Verfahren nach DIN EN 12354.
- 2) Werte von Rohdecke und Unterdecke ohne Fußbodenaufbau.
- 3) Werte abgeleitet von Beplankung 12,5 mm.
- 4) Erhöhtes Vorhaltemaß von 4 dB zur Berücksichtigung der Prüfung mit teilflächigem Estrich.

Größere Abhängehöhen / größere Dicken der Rohdecke verbessern den Schallschutz.

Schallschutz-Nachweise
T 007-06.10, T 008-10.10, T 009-10.10, T 010-06.12, T 011-07.10

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Plattendecken D11.de.

Geprüfte Luft- und Trittschalldämmung mit Knauf Plattendecken

Luft- und Trittschalldämmung (Fortsetzung)

Tab. FM. 2: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)		Ohne Fußboden		fußbodenaufba bau eilestrich trio WF		Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte		
							Steifigkeitsgruppe 10	
	Schalldämm- Maß R_w (C I C_{tr}) $R_{w,R}$ dB	$\label{eq:local_continuity} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:local_nw} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\text{I}} \textbf{I} \textbf{C}_{\text{I},50\text{-}2500}) \\ & \textbf{L}_{\text{n,w,R}} \\ & \text{dB} \end{split}$	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:local_nw} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\text{I}} \textbf{I} \textbf{C}_{\text{I},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \text{dB} \end{split}$	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\begin{tabular}{ll} Normtritt-\\ schallpegel & $L_{n,w}$\\ (C_l \ I \ C_{l,50\text{-}2500}) \\ & L_{n,w,R} \\ dB \end{tabular}$
Ohne Unterdecke (alle Maße in mm)	53 (-2 I -6) 51	80 (-12 I -12) 82	58 (-2 I -7) 56	57 (0 0) 59	62 (-2 I -7) 60	49 (1 4) 51	65 (- I -) 63	41 (- -) 43
Rohdecke + Unterdecke D112	.de <	\Longrightarrow	Rohdecke + F	ußbodenaufbau	+ Unterdecke		>	
2x 12,5 mm Diamant	74 (-2 -7) 72	52 (-6 I -2) 54	76 (-3 I -9) 72 ¹⁾	39 (1 I 5) 43 ³⁾	80 ¹⁾ (-6 I -14) 76 ¹⁾	33 (5 13) 37 ³⁾	74 ²⁾ (- l -) 72 ²⁾	24 ¹⁾ (- I -) 28 ¹⁾
■ 12,5 mm Silentboard ■ 12,5 mm Diamant	74 (-2 -6) 72	49 (-5 l 1) 51	77 ¹⁾ (-3 I -10) 73 ¹⁾	38 (1 6) 42 ³⁾	81 ¹⁾ (-6 I -14) 77 ¹⁾	32 (5 12) 36 ³⁾	74 ²⁾ (- I -) 72 ²⁾	23 ¹⁾ (- I -) 27 ¹⁾
■ 2x 12,5 mm Silentboard	75 (-2 -7) 73	48 (-4 l 1) 50	78 ¹⁾ (-3 I -10) 74 ¹⁾	37 (1 I 5) 41 ³⁾	81 ¹⁾ (-5 I -13) 77 ¹⁾	30 (6 13) 34 ³⁾	75 ²⁾ (-I-) 73 ²⁾	22 ¹⁾ (- I -) 26 ¹⁾

¹⁾ Berechnung in Anlehnung an das detaillierte Verfahren nach DIN EN 12354.

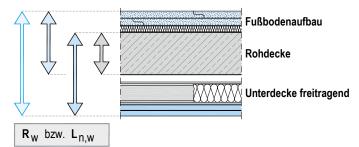
Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung u

Schallschutz-Nachweise T 007-06.10, T 008-10.10, T 009-10.10, T 010-06.12, T 011-07.10

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Plattendecken D11.de.

²⁾ Werte von Rohdecke und Unterdecke ohne Fußbodenaufbau.


³⁾ Erhöhtes Vorhaltemaß von 4 dB zur Berücksichtigung der Prüfung mit teilflächigem Estrich. Größere Abhängehöhen / größere Dicken der Rohdecke verbessern den Schallschutz.

Geprüfte Luft- und Trittschalldämmung mit Knauf Freitragenden Decken

Prüfaufbau

Unterdecke freitragend D131.de

- Tragprofil 2x CW 75 bzw. 2x CW 125
- Dämmschicht 60 mm bzw. 80 mm
 (z. B. Knauf Insulation Trennwand-Dämmplatte TP 115)
- Beplankung

Anforderungen an die Dämmschicht (z. B. von Knauf Insulation):
Mineralwolle-Dämmschicht 60 mm bzw. 80 mm nach DIN EN 13162;
längenbezogener Strömungswiderstand nach DIN EN 29053: r ≥ 5 kPa·s/m²

Luft- und Trittschalldämmung

Tab. FM. 3: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Fußbode	Ohne Fußboden		ußbodenaufba bau eilestrich rio WF	■ 2x 23 mm B ■ 20 mm Knar Trittschall-D TP-GP	uf Insulation	Knauf Fließes ■ 40 mm Knaı ■ 9,5 mm Kna ■ 25 mm Mine Trittschall-D Steifigkeitsg	nauf FE50 nauf Bauplatte neralwolle -Dämmplatte	
							WWW.		
	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:continuous_loss} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R _w (C C _{tr}) R _{w,R} dB	$\label{eq:local_norm} \begin{split} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R _w (C C _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w} (C _I I C _{I,50-2500}) L _{n,w,R} dB	Schalldämm- Maß R _w (C C _{tr}) R _{w,R} dB	$\label{eq:normtritt-schallpegel} \begin{aligned} & & \text{Normtritt-schallpegel} \\ & & & \text{$L_{\text{n,w}}$} \\ & & & \text{$(C_{\text{I}} \ \text{I} \ \text{$C_{\text{I},50-2500}$})$} \\ & & & \text{$L_{\text{n,w,R}}$} \\ & & & & \text{$dB$} \end{aligned}$	
Ohne Unterdecke (alle Maße in mm)	53 (-2 I -6) 51	80 (-12 I -12) 82	58 (-2 I -7) 56	57 (0 0) 59	62 (-2 I -7) 60	49 (1 4) 51	65 (- I -) 63	41 (- l -) 43	
Rohdecke + Unterdecke D131	.de 🗸	── >	Rohdecke + Fi	ußbodenaufbau	+ Unterdecke		──		
■ 2x CW 75 ■ 12,5 mm Diamant	69 ¹⁾ (-2 I -6) 65	54 ¹⁾ (-8 -5) 58	73 (-2 I -8) 71	40 (2 7) 43	77 ¹⁾ (-4 I -12) 71	34 ¹⁾ (2 I 16) 40	69 ²⁾ (– I –) 65 ²⁾	25 ¹⁾ (– I –) 31	
2x CW 75 15 mm Diamant	$69^{3)}$ (-2 I -6) ≥ $65^{3)}$	54 ³⁾ (-8 -5) ≤ 58 ³⁾	73 (-2 -7) 71	41 (1 4) 43	77 ³⁾ (-4 I -12) ≥ 71 ³⁾	34 ³⁾ (2 I 16) 40 ³⁾	69 ³⁾ (- I -) ≥ 65 ³⁾	25 ³⁾ (– I –) 31 ³⁾	
2x CW 75 2x 12,5 mm Diamant	70 (-2 I -6) 68	50 (-4 -2) 52	75 (-2 -8) 73	37 (2 6) 39	78 ¹⁾ (-4 I -12) 74	34 ¹⁾ (4 I 15) 38	70 ²⁾ (- I -) 68 ²⁾	25 ¹⁾ (- I -) 29	

- 1) Berechnung in Anlehnung an das detaillierte Verfahren nach DIN EN 12354.
- 2) Werte von Rohdecke und Unterdecke ohne Fußbodenaufbau.
- 3) Werte abgeleitet von Beplankung 12,5 mm.

Größere Abstände zur Rohdecke / größere Dicken der Rohdecke verbessern den Schallschutz.

Schallschutz-Nachweise
T 007-06.10, T 008-10.10, T 009-10.10, T 010-06.12, T 011-07.10

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Freitragende Decken D13.de.

Geprüfte Luft- und Trittschalldämmung mit Knauf Freitragenden Decken

Luft- und Trittschalldämmung (Fortsetzung)

Tab. FM. 4: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Fußboden		Rohdecke + F Fußbodenauf Knauf Fertigte 1x 18 mm B	eilestrich	■ 2x 23 mm B ■ 20 mm Knaı Trittschall-D TP-GP	uf Insulation	Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10		
	Schalldämm- Maß $\mathbf{R_{w}}$ $(C \mid C_{tr})$ $\mathbf{R_{w,R}}$ $d\mathbf{B}$	$\begin{aligned} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\begin{aligned} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R _w (C C _{tr}) R _{w,R} dB	$\begin{aligned} & \text{Normtritt-} \\ & \text{schallpegel} \\ & $	Schalldämm- Maß R_w (C C _{tr}) $R_{w,R}$ dB	Normtritt- schallpegel $L_{n,w}$ $(C_1 \mid C_{1,50-2500})$ $L_{n,w,R}$ dB	
Ohne Unterdecke (alle Maße in mm)	53 (-2 I -6) 51	80 (-12 I -12) 82	58 (-2 I -7) 56	57 (0 0) 59	62 (-2 I -7) 60	49 (1 4) 51	65 (- I -) 63	41 (- -) 43	
Rohdecke + Unterdecke D131	.de 👇	\Longrightarrow	Rohdecke + Fußbodenaufbau + Unterdecke			< <u> </u>	$\longrightarrow \hspace{0.2cm} \searrow$		
■ 2x CW 125 ■ 12,5 mm Silentboard	75,8 (-1,9 I -6,4) 73	41,6 (0,2 4,0) 44	78 ¹⁾ (-2 I -9) 74	35,9 ³⁾ (1,2 4,9) 40	82 ¹⁾ (-6 I -14) 78	29,6 ³⁾ (5,3 12,5) 34	75,8 ²⁾ (- I -) 73 ²⁾	19 ¹⁾ (- I -) 23	
2x CW 125 12,5 mm Silentboard 12,5 mm Diamant	76,4 (-1,9 I -6,3) 74	41,7 (0,7 3,5) 44	80 ¹⁾ (-3 I -10) 76	35,8 ³⁾ (1,6 4,4) 40	83 ¹⁾ (-6 I -14) 79	29,1 ³⁾ (8,3 13,1) 34	76,4 ²⁾ (- I -) 74 ²⁾	19 ¹⁾ (- I -) 23	

¹⁾ Berechnung in Anlehnung an das detaillierte Verfahren nach DIN EN 12354.

Größere Abstände zur Rohdecke / größere Dicken der Rohdecke verbessern den Schallschutz.

Hinweise Weite

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Freitragende Decken D13.de.

²⁾ Werte von Rohdecke und Unterdecke ohne Fußbodenaufbau.

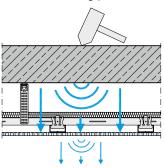
³⁾ Erhöhtes Vorhaltemaß von 4 dB zur Berücksichtigung der Prüfung mit teilflächigem Estrich.

Massivdecken mit Knauf Estrich-Systemen und/oder Knauf Cleaneo Akustik-Decken

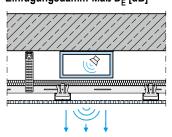
Geprüfte und prognostizierte Luft- und Trittschalldämmung sowie Einfügungsdämm-Maße

Die absorbierenden Eigenschaften des Produktportfolios der Knauf Cleaneo Raumakustikdecken sind bekannt. Neu hingegen sind die Verbesserungsmaße im Luft- und Trittschalldämm-Maß sowie das Einfügungsdämm-Maß dieser Unterdecken. In Abhängigkeit des Lochbildes und der Dicke des Dämmstoffs ergeben sich teilweise erhebliche Verbesserungen der bauakustischen Eigenschaften.

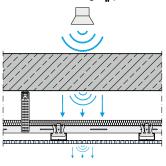
Zusätzlich wurden Verbesserungen im Luft- und Trittschalldämm-Maß durch die Kombinationen aus unterschiedlichen Estrichaufbauten und Raumakustikdecken prognostiziert.


Luft- und Trittschalldämmung mit Knauf Akustik-Decken

Luft- und Trittschalldämmung


Schemazeichnungen

Definitionen

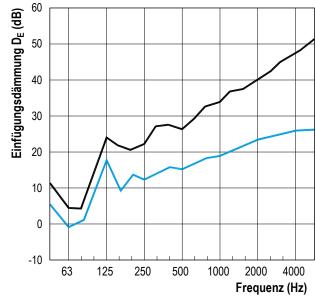

Trittschalldämmung (Trittschallminderung $\Delta L_{n.w}$ [dB])

Einfügungsdämm-Maß D_F [dB]

Luftschalldämmung R_w (Verbesserungsmaß $\Delta R_{w,heavy}$ [dB])

Für die berechneten Werte nach DIN EN 12354 auf den folgenden Seiten gilt:

- Vorhaltemaß zur Umrechnung der prognostizierten Werte in Rechenwerte in Anlehnung an DIN 4109-2:2016 für Decken:
 - 3 dB beim Norm-Trittschallpegel
 - 2 dB beim Luftschalldämm-Maß
- Berechnung der Schalldämm-Maße und Norm-Trittschallpegel nach dem detaillierten Verfahren der DIN EN 12354/2000
 - Teil 1 Luftschall
 - Teil 2 Trittschall

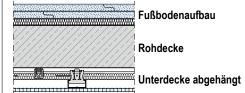

Einfügungsdämm-Maß D_F

Das Einfügungsdämm-Maß D_E wird nach VDI 3755:2015-1 bestimmt und ist definiert als die mit der äquivalenten Schallabsorptionsfläche A korrigierte Differenz der mittleren Schallpegel L mit und ohne Unterdecke:

$$D_{E} = L_{ohne} - L_{mit} + 10log \left(\frac{A_{mit}}{A_{ohne}}\right)$$

Bei der Anwendung von D_E ist zu beachten, dass diese von dem tatsächlichen Störgeräusch und der Quellposition abhängig ist und somit versierten Anwendern als Orientierungswert für die Planung dienen kann. Diese Größe wird nur frequenzabhängig angegeben. Die Kurvenverläufe und weitere Angaben können dem Nachweis T017-07.17 entnommen werden.

Abb. FM. 1: Frequenzabhängiges Einfügungsdämm-Maß D_E System D127.de


Nonius-Abhänger,

2x 80 mm Trennwand-Dämmplatte TP 115, Grund- und Tragprofil CD 60/27, 12,5 mm Cleaneo 6/18 R Konstruktionstiefe 400 mm

Nonius-Abhänger.

20 mm Akustik-Dämmplatte TP 120 A, Grund- und Tragprofil CD 60/27, 12,5 mm Cleaneo 6/18 R Konstruktionstiefe 400 mm

Beispielhafter Prüfaufbau

Unterdecke: z. B. D127.de - Cleaneo Akustik-Plattendecke

- Direktschwingabhänger
- Mineralwolle-Dämmschicht, nach DIN EN 13162, längenbezogener Strömungswiderstand nach DIN EN 29053 r ≥ 5 kPa·s/m²
- Grund- und Tragprofil CD 60/27
- Cleaneo 6/18 R bzw. 12/25 Q

Luft- und Trittschalldämmung mit Knauf Akustik-Plattendecken

D127.de - Luft- und Trittschalldämmung mit Cleaneo 12/25 Q

Schemazeichnungen I Maße in mm

Tab. FM. 5: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Fußboden		Rohdecke + Fußbodenaufbau Fußbodenaufbau Knauf Fertigteilestrich 1x 18 mm Brio WF		■ 2x 23 mm Brio ■ 20 mm Knauf Insulation Trittschall-Dämmplatte TP-GP		Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10			
		alldämi				77777				
	Norn R _w	n-Tritts R _{w,R}	schallp L _{n,w}	egel L _{n,w,R}	$\begin{array}{ccc} \textbf{Verbesserungsmaß} \\ \Delta R_{w,heavy} & \Delta L_{n,w} \end{array}$		$\Delta R_{w,heavy}$	$\Delta L_{n,w}$	$\Delta R_{w,heavy}$	\DeltaL_n,w
	dB	dB	dB	dB	dB	dB	qB	dB	dB	dB
Ohne Unterdecke Rohdecke + Unterdecke Cleaneo 12/25 Q Lochanteil 23,0 %	ΔR_{w}	esseru v,heavy B	ΔL	81 aß -n,w B	Berechnete V	Fußbodenaufbar Verte nach dem IN EN 12354-2:2 Normtritt- schallpegel Ln,w,calc (C1 I C1,50-2500) Ln,w,R dB	detaillierten Ve	erfahren der DIN	Schalldämm- Maß R _{w,calc} (C C _{tr}) R _{w,R} dB	Normtritt-schallpegel L _{n,w,calc} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB
■ Direktschwingabhänger ■ 20 mm Akustik-Dämmplatte TP 120 A	4	,8	14	1,5	59 (-4 I -10) 57	55 (2 I 3) 58	64 (-4 I -11) 62	48 (1 8) 51	-	39 (- l -) 42
■ Direktschwingabhänger ■ 20 mm Akustik-Dämmplatte TP 120 A	8	,3	14	1,4	63 (-4 I -11) 61	51 (1 2) 54	68 (-5 I -13) 66	44 (1 I 9) 47	-	34 (-۱-) 37
■ Direktschwingabhänger ■ 2x 80 mm Trennwand-Dämmplatte TP 115	13	3,4	25	5,3	67 (-4 I -12) 65	48 (2 4) 51	73 (-7 I -15) 71	41 (2 12) 44	-	29 (- I -) 32

Scha	ıllschutz-Nachweis
T017-	-07.17

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Cleaneo Akustik-Plattendecken D12.de.

Luft- und Trittschalldämmung mit Knauf Akustik-Plattendecken

D127.de – Luft- und Trittschalldämmung mit Cleaneo 12/25 Q (Fortsetzung)

Schemazeichnungen I Maße in mm

Tab. FM. 6: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne F	ußboden			eilestrich		Brio uf Insulation	Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10	
		Schalldämm-Maß / Iorm-Trittschallpegel Verbesserungsmaß							
	R _w F	$R_{w,R}$ $L_{n,v}$ dB dB	·	ΔR _{w,heavy} dB	$\Delta L_{n,w}$ dB	$\begin{array}{c} \Delta R_{w,heavy} \\ \text{dB} \end{array}$	$\begin{array}{c} \Delta L_{n,w} \\ \text{dB} \end{array}$	$\begin{array}{c} \Delta R_{w,heavy} \\ dB \end{array}$	$\begin{array}{c} \Delta L_{n,w} \\ dB \end{array}$
Ohne Unterdecke	53,5	51 79,	81	6	20	10	28	_	37
Rohdecke + Unterdecke Cleaneo 12/25 Q Lochanteil 23,0 %	Verbes ΔR _{w,he} dB	serungs avy	maß ΔL _{n,w} dB	Berechnete V	Fußbodenaufbar Verte nach dem IN EN 12354-2:2 Normtritt- schallpegel L _{n,w,calc} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB	detaillierten Ve	erfahren der DIN	Schalldämm- Maß R _{w,calc} (CIC _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w,calc} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB
Nonius-Abhänger 20 mm Akustik-Dämmplatte TP 120 A	7,8		14,1	64 (-3 I -10) 62	50 (112) 53	69 (-4 I -12) 67	43 (1 I 10) 46	-	34 (-1-) 37
■ Nonius-Abhänger ■ 2x 80 mm Trennwand-Dämmplatte TP 115	12,8		22,6	66 (-4 I -12) 64	48 (2 4) 51	72 (-7 I -16) 70	40 (4 14) 43	_	31 (-۱-) 34

Schallschutz-Nachweis T017-07.17 Hinweise

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Cleaneo Akustik-Plattendecken D12.de.

Luft- und Trittschalldämmung mit Knauf Akustik-Plattendecken

D127.de – Luft- und Trittschalldämmung mit Cleaneo 6/18 R

Schemazeichnungen I Maße in mm

Tab. FM. 7: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Fußboden		Rohdecke + F Fußbodenauf Knauf Fertigt ■ 1x 18 mm E	eilestrich	■ 2x 23 mm B ■ 20 mm Knaı Trittschall-D TP-GP	uf Insulation	Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10			
	Schal	ldämı	m-Maß	\$ <i>1</i>);;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			<u></u>	
		-Tritts R _{w,R} dB	challp L _{n,w} dB	egel L _{n,w,R} dB	$\begin{array}{ccc} \textbf{Verbesserungsmaß} & & \\ \Delta R_{w,heavy} & & \Delta L_{n,w} \\ \text{dB} & & \text{dB} \end{array}$		$\Delta R_{w,heavy}$ $\Delta L_{n,w}$ dB dB		$\Delta R_{w,heavy} \ dB$	ΔL _{n,w} dB
Ohne Unterdecke	53,5	51	79,5	81	6	20	10	28	_	37
Rohdecke + Unterdecke Cleaneo 6/18 R Lochanteil 8,7%	Verk	oesse	rungs	maß	Rohdecke + F Berechnete V schall) und D	Fußbodenaufba Verte nach dem IN EN 12354-2:2	u + Unterdecke detaillierten Ve	rfahren der DIN	N EN 12354-1:20	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ΔR _{w,h} dE	neavy	Δl	-n,w IB	Schalldämm- Maß R _{w,calc} (CIC _{tr}) R _{w,R} dB	$\label{eq:normalized} \begin{aligned} & \text{Normtritt-} \\ & \text{schallpegel} \\ & \textbf{L}_{\textbf{n,w,calc}} \\ & (\textbf{C}_{\textbf{I}} \ \textbf{I} \ \textbf{C}_{\textbf{I,50-2500}}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \textbf{dB} \end{aligned}$	$\label{eq:schalldamm-schalldamm-mak} \begin{aligned} & \text{Mak} \\ & \text{R}_{\text{w,calc}} \\ & \text{(C I C}_{\text{tr}}) \\ & \text{R}_{\text{w,R}} \\ & \text{dB} \end{aligned}$	$\label{eq:Normtritt-schallpegel} \begin{aligned} & \text{Normtritt-schallpegel} \\ & \textbf{L}_{\text{n,w,calc}} \\ & (\textbf{C}_{\text{I}} \ \textbf{I} \ \textbf{C}_{\text{I,50-2500}}) \\ & \textbf{L}_{\text{n,w,R}} \\ & \text{dB} \end{aligned}$	$\label{eq:schalldamm-maß} \begin{aligned} & \text{Schalldämm-} \\ & \text{Maß} \\ & \text{R}_{\text{w,calc}} \\ & (\text{C I C}_{\text{tr}}) \\ & \text{R}_{\text{w,R}} \\ & \text{dB} \end{aligned}$	$\label{eq:Normtritt-Schallpegel} Normtritt-schallpegel \\ L_{n,w,calc} \\ (C_{l} \ l \ C_{l,50-2500}) \\ L_{n,w,R} \\ dB$
■ Direktschwingabhänger ■ 20 mm Akustik-Dämmplatte TP 120 A	12,	.0	20),1	66 (-4 I -11) 64	48 (1 l 4) 51	71 (-6 I -14) 69	41 (2 13) 44	-	31 (-I-) 34
Nonius-Abhänger 20 mm Akustik-Dämmplatte TP 120 A	11,	3	19	9,2	67 (-4 I -10) 65	48 (1 I 3) 51	72 (-5 I -13) 70	40 (3 13) 43	_	31 (- I -) 34
■ Nonius-Abhänger ■ 2x 80 mm Trennwand-Dämmplatte TP 115	15,	6	2	5,9	69 (-4 I -12) 67	45 (3 5) 48	75 (-7 l -16) 73	38 (4 I 16) 41	-	28 (- I -) 31

Schallschutz-Nachweis
T017-07.17

	Hinweise auf Seite 4 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe
	Detailblatt Knauf Cleaneo Akustik-Plattendecken D12.de.

Luft- und Trittschalldämmung mit Knauf Akustik-Kassettendecken

D146.de – Luft- und Trittschalldämmung mit Plaza Tangent 14-4/20 Schlitze

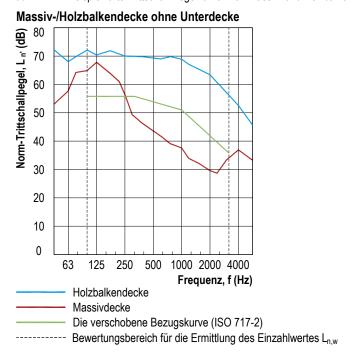
Schemazeichnungen I Maße in mm

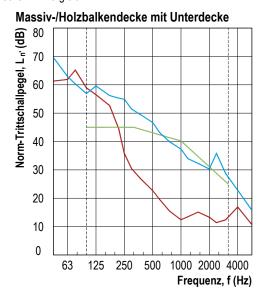
Tab. FM. 8: Schallschutztechnische Kennwerte von Knauf Systemen in Verbindung mit einer Massivdecke, Flächenmasse 320 kg/m²

Rohdecke Stahlbetondecke 140 mm, ca. 320 kg/m² (Norm-Bezugsdecke)	Ohne Ful	Ohne Fußboden		Rohdecke + Fußbodenaufbau Fußbodenaufbau Knauf Fertigteilestrich 1x 18 mm Brio WF		u ■ 2x 23 mm E ■ 20 mm Kna Trittschall-D TP-GP	uf Insulation	Knauf Fließestrich ■ 40 mm Knauf FE50 ■ 9,5 mm Knauf Bauplatte ■ 25 mm Mineralwolle Trittschall-Dämmplatte Steifigkeitsgruppe 10	
				Schalldämm-Maß / lorm-Trittschallpegel Verbesserungsmaß					
	R_{w} $R_{w,}$ dB dE		$\begin{array}{c} L_{n,w,R} \\ dB \end{array}$	$\begin{array}{c} \Delta R_{w,heavy} \\ \text{dB} \end{array}$	$\Delta L_{n,w}$ dB	$\begin{array}{c} \Delta R_{w,heavy} \\ \text{dB} \end{array}$	$\Delta L_{n,w}$ dB	$\begin{array}{c} \Delta R_{w,heavy} \\ \text{dB} \end{array}$	ΔL _{n,w} dB
Ohne Unterdecke	53,5 51	79,5	81	6	20	10	28	_	37
Rohdecke + Unterdecke Plaza Tangent 14-4/20 Schlitze	Verbes	serungs	maß	Berechnete V	ußbodenaufba /erte nach dem IN EN 12354-2:2	detaillierten Ve	erfahren der DIN	N EN 12354-1:2	000 (Luft-
Lochanteil 21,1 %	ΔR _{w,heavy} dB	Δl	-n,w IB	Schalldämm- Maß R _{w,calc} (CIC _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w,calc} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB	Schalldämm- Maß R _{w,calc} (C I C _{tr}) R _{w,R} dB	Normtritt- schallpegel $L_{n,w,calc}$ $(C_1 \mid C_{1,50-2500})$ $L_{n,w,R}$ dB	Schalldämm- Maß R _{w,calc} (C I C _{tr}) R _{w,R} dB	$\label{eq:Normtritt-Schallpegel} \begin{aligned} & \textbf{L}_{\textbf{n,w,calc}} \\ & \textbf{C}_{\textbf{l}} \ \textbf{I} \ \textbf{C}_{\textbf{l},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \textbf{dB} \end{aligned}$
Schnellabhänger mit Öse Ohne Dämmung	6,4	8	,3	62 (-4 I -10) 60	53 (1 2) 56	67 (-4 I -11) 65	46 (1 8) 49	-	37 (- l -) 40
Schnellabhänger mit Öse 20 mm Akustik-Dämmplatte TP 120 A	8,3	1:	5,1	62 (-3 I -10) 60	51 (2 3) 54	68 (-5 I -12) 66	44 (2 10) 47	-	35 (-I-) 38
■ Schnellabhänger mit Öse ■ 50 mm Akustik-Dämmplatte TP 440	10,0	19	9,5	63 (-4 I -11) 61	50 (2 4) 53	69 (-6 I -14) 67	43 (2 I 11) 46	-	34 (-1-) 37

Schallschutz-Nachweis	
T017-07.17	

	Hinweise auf Seite 4 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe




Holzbalkendecken

Holzbalkendecken mit Estrich und/oder Deckenbekleidungen/Unterdecken

Geprüfte Luft- und Trittschalldämmung

Abb. FH. 1: Beispielhafte Trittschall-Pegelkurven von Massiv- und Holzbalkendecken im Vergleich

Holzbalkendecken mit Estrich und/oder Deckenbekleidungen/Unterdecken

Holzbalkendecken sind insbesondere bei der Sanierung alter Bausubstanz im Hinblick auf die Erreichung aktueller brand- und schallschutztechnischer Forderungen interessant.

Mit richtig konstruierten Holzbalkendecken können trotz geringer Masse gegenüber Massivdecken gute Schalldämmwerte erreicht werden. Ausschlaggebend dafür ist, dass die überwiegende Zahl der Holzbalkendecken im Bestand mehrschalige Bauteile sind und durch entsprechende konstruktive Ausbildung ein schallschutztechnisch günstiges Feder-Masse-System aufgebaut werden kann.

Um die für den Schallschutz positive akustische Zweischalenwirkung zu erreichen, müssen Schallbrücken in Form von starren Verbindungen zwischen den einzelnen Schalen vermieden werden. Ansonsten kommt es zu einer starken Schallübertragung (z. B. Deckenbalken).

Gegenüber Massivdecken haben Holzbalkendecken üblicher Ausführung im Bestand konstruktionsbedingt einige schallschutztechnische Besonderheiten. Infolge der geringen Flächenmasse, der Resonanz zwischen den relativ leichten Schalen und ausgeprägter Körperschallbrücken, ist die Schalldämmung im tiefen Frequenzbereich meist schlecht. Mit steigender Frequenz steigt sie an und erreicht im hohen Frequenzbereich extrem gute Werte (Abb. FH. 1).

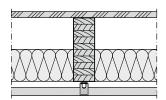
Die oftmals empfundene schlechte Schalldämmung der Holzbalkendecken ist der mangelhaften Schalldämmung im tiefen Frequenzbereich geschuldet (< 500 Hz). Verbesserungen müssen deshalb vor allem in diesem Bereich wirksam werden.

Für die Herangehensweise bei der Verbesserung des Schallschutzes von Holzbalkendecken ist es wichtig zu wissen dass die Anforderungen an den Trittschallschutz bei Holzbalkendecken schwieriger zu erfüllen sind als der geforderte Luftschallschutz gleicher Anforderungskategorie. Erfahrungsgemäß kann davon ausgegangen werden, dass bei ausreichendem Trittschallschutz der Luftschallschutz der Decke i. d. R. ebenfalls erreicht wird. Deshalb wird in den meisten Fällen die Decke nach der Anforderung an den Norm-Trittschallpegel im eingebauten Zustand L´n,w bemessen. Holzbalkendecken mit unterseitig sichtbaren Balken sind in schallschutztechnischer Sicht äußerst problematisch. Ohne Anordnung einer zusätzlichen

Unterschale (Deckenbekleidung unter Balken) ist selbst bei einem sehr guten schwimmenden Estrich i. d. R. keine ausreichende Luft- und Trittschalldämmung zu erreichen.

Trittschalldämmung – Ermittlung des bewerteten Normtrittschallpegels $\mathbf{L}_{\mathrm{n,w}}$ für Basiskonstruktionen

Ein gültiges genormtes Rechenverfahren zur Berechnung der Luft- und Trittschalldämmung von Holzbalkendecken gibt es bisher nicht. Bei Knauf wurden deshalb umfangreiche Messungen an typischen Holzbalkendecken in einem Prüfstand mit unterdrückten Nebenwegen durchgeführt und der Einfluss von Konstruktionsänderungen im Boden- und Unterdeckenbereich analysiert. Die Messwerte sind in den Tab. FH. 1 bis 6 zusammengefasst. Die Konstruktionen in Tab. FH. 1 bis 6 kennzeichnen Neuaufbauten oder "aufgerüstete" entkernte oder teilentkernte Bestandsdecken. Tab. FH. 7 bis 12 umfasst mit zusätzlichen Schichten komplettierte alte Holzbalkendecken.


Materialänderungen in den jeweiligen Konstruktionsschichten können über Korrekturwerte der Tab. FH. 13 und 14 berücksichtigt werden.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke A – leichter Einschub

Fußbodenaufbau: Siehe Tabelle Spanplatte: 22 mm

Holzbalken (KVH): 80 x 240 mm, Achsabstand 625 mm
Dämmung / Einschub zwischen den Balken: 120 mm (Knauf Insulation UNIFIT TI 135U)

Abhänger / Art der Unterkonstruktion: Direktschwingabhänger mit Holzlatte 30 x 50 mm oder Profil CD 60/27

Achsabstand b = 500 mm bzw. 400 mm (Silentboard)

Abhängehöhe: Ca. 55 mr

 $Tab.\ FH.\ 1:\ \ Bewertete\ Luftschalld\"{a}mm-Maße\ R_w/R_{w,R}\ und\ Norm-Trittschallpegel\ L_{n,w}/L_{n,w,R}\ (ohne\ Nebenwege)\ von\ Holzbalkendecken\ im\ Neubau$

Rohdecke	Fußbodenauf	bau – Fertigteil	estrich					
Messwerte: R _w = 27,2 dB L _{n,w} = 90,0 dB (Messwerte ohne Mineralwolle zwischen den Deckenbalken, ohne Unterdecke)	■ 1x Brio 18 WF oder 1x Brio 23 WF		■ 12,5 mm Silentboard		 1x Brio 23 25 mm Uponor Siccus Fußbodenheizung 12,5 mm Knauf Bauplatte Lastverteilplatte 12 mm TPE 12-2 Trittschalldämmplatte 		ung Trittschalldämmplatt f Bauplatte e 2-2	
					Q			
	Schalldämm- Maß R _w	Normtritt- schallpegel L _{n,w}	Schalldämm- Maß R _w	Normtritt- schallpegel L _{n.w}	Schalldämm- Maß R _w	Normtritt- schallpegel L _{n,w}	Schalldämm- Maß R _w	Normtritt- schallpegel L _{n,w}
Deckenbekleidung/ Unterdecke Beplankung	$(C \mid \overset{\mathbf{w}}{C_{tr}})$ $R_{w,R}$ dB	(C ₁ I C _{1,50-2500}) L _{n,w,R} dB	(C I C _{tr}) R _{w,R} dB	(C _I I C _{I,50-2500}) L _{n,w,R} dB	(C I $\overset{\mathbf{w}}{C}_{tr}$) $R_{w,R}$ dB	(C ₁ I C _{1,50-2500}) L _{n,w,R} dB	(C I $\overset{\mathbf{w}}{C_{tr}}$) $R_{w,R}$ dB	(C ₁ I C _{1,50-2500}) L _{n,w,R} dB
12,5 mm Knauf Bauplatte	60,7 (-4,5 <i>I</i> -11,4) 57	53,2 (1,8 I 6,6) 58	-	-	62,5 (-5,3 <i>I</i> -12,3) 59	51,7 (2,5 5,5) 56	64,0 (-4,3 I -10,7) 61	51,7 (2,7 7,0) 56
15 mm Knauf Feuerschutzplatte	63,6 (-4,4 I -10,9) 60	51,8 (1,7 6,7) 56	-	-	65,3 (-5,0 I -11,3) 62	50,4 (2,5 <i>I</i> 5,5) 55	66,8 (-4,3 <i>I</i> -10,3) 63	50,3 (2,7 1 6,9) 55
12,5 mm Diamant	67,9 ¹⁾ (-3,5 I -9,7) 65	50,0 ¹⁾ (0,8 9,0) 53	-	-	65,3 (-4,6 I -11,3) 62	50,9 (2,8 I 4,8) 55	66,8 (-3,8 <i>I</i> -6,6) 63	50,8 (3,0 I 6,1) 55
12,5 mm Silentboard	66,5 (-4,3 I -11,1) 64	48,9 (1,6 7,1) 52	69,8 (-3,5 -9,7) 67	46,1 (1,6 8,5) 50	68,2 (-5,1 I -11,9) 66	47,5 (2,4 6,0) 51	70,3 (-4,3 -10,6) 68	47,3 (2,4 7,4) 51

¹⁾ Messung mit abweichender Abhanghöhe von 35 mm statt 55 mm.

Kursive Werte: Prognostizierte Werte unter Berücksichtigung einer zusätzlichen Prognoseunsicherheit von 1 dB.

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 13 Seite 32 verwendet werden.

Schallschutz-Nachweis T 015-07.16 Hinweise

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke A – leichter Einschub (Fortsetzung)

 $Tab. \ FH. \ 2: \ \ Bewertete \ Luftschalld\"{a}mm-Maße \ R_{w}/R_{w,R} \ und \ Norm-Trittschallpegel \ L_{n,w}/L_{n,w,R} \ (ohne \ Nebenwege) \ von \ Holzbalkendecken \ im \ Neubau \ Nebenwege)$

Rohdecke	ecke Fußbodenaufbau – Fertigteilestrich							
Messwerte: R _w = 27,2 dB L _{n,w} = 90,0 dB (Messwerte ohne Mineralwolle zwischen den Deckenbalken, ohne Unterdecke)	■ 1x Brio 18 WF oder 1x Brio 23 WF		■ 1x Brio 18 WF ■ 12,5 mm Silentboard		 1x Brio 23 25 mm Upo Fußbodenh 12,5 mm Ki Lastverteilp 12 mm TPE Trittschalldä 	eizung nauf Bauplatte latte E 12-2	■ 2x Brio 23 ■ 12 mm TPE 12-2 Trittschalldämmplatte	
				0				
Deckenbekleidung/	Schalldämm- Maß R _w (C I C _{tr})	Normtritt- schallpegel $L_{n,w}$ $(C_1 \mid C_{1,50-2500})$	Schalldämm- Maß R _w (C I C _{tr})	Normtritt- schallpegel L _{n,w} (C ₁ I C _{1,50-2500})	Schalldämm- Maß R _w (CIC _{tr})	Normtritt- schallpegel $L_{n,w}$ $(C_1 \mid C_{1,50-2500})$	Schalldämm- Maß R _w (C I C _{tr})	Normtritt- schallpegel L _{n,w} (C ₁ I C _{1,50-2500})
Unterdecke Beplankung	$R_{w,R}$ dB	$L_{n,w,R}$ dB	$R_{w,R}$ dB	L _{n,w,R} dB	$R_{w,R}$ dB	$L_{n,w,R}$ dB	$R_{w,R}$ dB	L _{n,w,R} dB
2x 12,5 mm Knauf Bauplatte	64,9 (-4,5 <i>I</i> -11,5) 61	49,6 (1,9 7,7) 54	-	-	66,6 (-5,1 <i>I</i> -12,2) 63	48,2 (2,6 <i>l</i> 6,4) 53	68,3 (-4,3 <i>I</i> -10,7) 65	48,1 (2,8 8,0) 53
12,5 mm Knauf Bauplatte + 12,5 mm Diamant	67,2 (-4,8 <i>I</i> -11,3) 64	47,4 (1,9 8,6) 52	-	-	68,9 (-5,5 <i>I</i> -12,0) 65	46,0 (2,4 6,9) 50	70,4 (-4,8 I -10,8) 67	45,9 (2,7 1 8,7) 50
12,5 mm Silentboard + 12,5 mm Diamant	70,3 (-3,9 <i>I</i> -10,5) 67	44,7 (2,3 7,8) 49	-	-	71,9 (-4,4 <i>I</i> -11,1) 68	43,3 (2,9 1 6,5) 48	73,3 (-3,6 I -9,6) 71	43,2 (3,2 8,1) 48
2x 18 mm Knauf Feuerschutzplatte	70,1 (-4,1 I -10,6) 67	44,8 (0,7 7,8) 49	72,9 (-3,1 I -8,9) 70	41,9 (0,7 9,0) 46	71,8 (-4,7 <i>I</i> -11,2) 68	42,3 (2,5 7,2) 47	73,1 (-3,8 I -9,8) 70	44,5 (0,5 6,8) 49
25 mm Massivbauplatte	70,0 (-4,1 I -10,9)	44,2 (1,8 7,9)			71,7	42,7 (2,5 6,4)	73,1 (-3,6 <i>I</i> -9,8) 70	43,3 (2,1 7,5) 48
12,5 mm Diamant	67	49	_	_	(-4,6 I -11,5) 68	47	72,5 ¹⁾ (-5,2 <i>I</i> -12,1) 69 ¹⁾	43,2 ¹⁾ (2,2 1 9,3) 48 ¹⁾
20 mm Fireboard + 12,5 mm Silentboard	70,3 (-4,2 <i>l</i> -11,1) 67	45,1 (1,3 7,3) 50	72,2 (-2,5 I -8,6) 70	42,4 (1,4 8,2) 46	71,7 (-4,5 <i>I</i> -11,5) 68	43,2 (2,5 6,4) 48	72,5 (-3,6 I -10,0) 70	45,2 (1,0 6,8) 49
2x 12,5 mm Silentboard	70,0 (-3,7 I -10,2) 68	44,4 (1,8 7,5) 48	72,6 (-2,5 I -8,2) 70	41,8 (1,3 8,0) 45	71,5 (-3,8 I -10,6) 69	43,0 (2,3 5,9) 46	72,4 (-3,1 I -8,9) 70	43,0 (2,7 7,7) 46

¹⁾ Messung mit 2x Brio 18 + TPE 20-2 Trittschalldämmplatte.

Kursive Werte: Prognostizierte Werte unter Berücksichtigung einer zusätzlichen Prognoseunsicherheit von 1 dB.

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 13 Seite 32 verwendet werden.

Hinweise

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke A – leichter Einschub (Fortsetzung)

 $Tab. \ FH. \ 3: \ \ Bewertete \ Luftschalld\"{a}mm-Maße \ R_w/R_{w,R} \ und \ Norm-Trittschallpegel \ L_{n,w}/L_{n,w,R} \ (ohne \ Nebenwege) \ von \ Holzbalkendecken \ im \ Neubau \ Nebenwege)$

Rohdecke Messwerte: R _w = 27,2 dB L _{n,w} = 90,0 dB	Fußbodenaufbau ■ 35 mm Knauf Fl ■ 12,5 mm Knauf Lastverteilplatte	– Fließestrich E50 Bauplatte	35 mm Knauf FI25 mm Heraklith Dämmplatte		■ 55 mm Knauf FE50 ■ Fußbodenheizung 35-3 DES Uponor Klett		
(Messwerte ohne Mineral- wolle zwischen den Deckenbalken, ohne Unterdecke)	,				0 0		
Deckenbekleidung/ Unterdecke Beplankung	Schalldämm-Maß $\mathbf{R_w}$ (C C _{tr}) $\mathbf{R_{w,R}}$ dB	$\begin{aligned} & \text{Normtrittschallpegel} \\ & $	Schalldämm-Maß $\mathbf{R_w}$ (C C _{tr}) $\mathbf{R_{w,R}}$ dB	$\begin{aligned} & \text{Normtrittschallpegel} \\ & $	Schalldämm-Maß $\mathbf{R_w}$ (C C _{tr}) $\mathbf{R_{w,R}}$ dB	$\begin{aligned} & \text{Normtrittschallpegel} \\ & $	
12,5 mm Knauf Bauplatte	64,9 (-4,9 <i>I</i> -11,4) 61	49,7 (2,4 5,7) 54	64,3 (-7,1 I -14,9) 61	47,4 (3,1 6,8) 52	69,0 (-6,3 I -13,9) 67	50,7 (1,0 4,6) 54	
15 mm Knauf Feuerschutzplatte	67,6 (-4,7 I -10,9) 64	48,3 (2,4 5,7) 53	67,1 (-6,4 I -13,8) 64	47,0 (1,9 I 5,8) 51	67,1 (-6,0 I -13,1) 64	51,0 (1,0 3,0) 55	
12,5 mm Diamant	67,6 (-4,2 I -10,4) 64	48,7 (2,8 <i>l</i> 5,0) 53	67,1 (-6,1	47,3 (2,6 5,2) 52	67,2 (-5,7 I -13,0) 64	51,3 (1,4 2,8) 56	
12,5 mm Silentboard	71,0 (-4,5 I -10,9) 69	45,7 (2,1 5,7) 49	70,6 (-6,9 I -14,7) 68	42,5 (2,5 7,4) 46	71,1 (-7,0 I -14,3) 69	46,1 (1,6 4,9) 50	
2x 12,5 mm Knauf Bauplatte	69,2 (-4,8 I -11,3) 66	46,0 (2,5 6,7) 50	68,5 (-7,0 I -15,0) 65	44,2 (2,8 7,4) 49	68,6 (-6,5 <i>I</i> -14,1) 65	48,5 (1,2 3,9) 53	
12,5 mm Knauf Bauplatte + 12,5 mm Diamant	71,2 (-5,3 <i>I</i> -11,4) 68	43,9 (2,3 7,2) 48	70,6 (-6,6 I -13,8) 67	42,0 (2,8 8,1) 46	70,7 (-6,5 <i>I</i> -13,4) 67	45,7 (1,8 I 5,0) 50	
12,5 mm Silentboard + 12,5 mm Diamant	74,1 (-4,0 I -10,2) 71	40,9 (3,0 7,0) 45	73,7 (-5,9 I -13,4) 70	39,6 (3,1 7,3) 44	73,8 (-5,6 I -12,8) 70	43,6 (1,5 4,0) 48	
2x 18 mm Knauf Feuerschutzplatte	73,9 (-4,2 I -10,3) 70	40,6 (2,0 7,1) 45	72,4 (-6,0 I -13,6) 70	41,9 (0,4 4,6) 45	73,5 (-5,6 I -12,6) 70	44,0 (-0,1 3,3) 48	
25 mm Massivbauplatte + 12,5 mm Diamant	72,6 (-3,0 I -9,2) 70	42,8 (1,9 I 5,3) 46	72,6 (-6,1 I -14,0) 70	39,9 (1,9 6,5) 43	73,5 (-5,8 I -13,3) 70	43,5 (0,7 3,5) 48	
20 mm Fireboard + 12,5 mm Silentboard	73,8 (-3,8 <i>I</i> -10,1) 70	41,0 (2,5 6,8) 45	73,3 (-6,2 I -14,0) 70	41,5 (0,4 5,1) 46	73,4 (-5,7 I -13,2) 70	43,8 (1,0 3,6) 48	
2x 12,5 mm Silentboard	73,4 (-3,6 I -9,7) 71	40,5 (2,4 6,8) 44	72,7 (-5,1 I -12,8) 70	39,7 (2,8 I 6,9) 43	73,4 (-4,0 I -11,0) 71	42,9 (0,6 3,2) 46	

Kursive Werte: Prognostizierte Werte unter Berücksichtigung einer zusätzlichen Prognoseunsicherheit von 1 dB.

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 13 Seite 32 verwendet werden.

Schallschutz-Nachweis	
T 015-07.16	


Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke B - leichter Einschub

Fußbodenaufbau: Ohne Fußbodenaufbau bzw. Brio WF

Spanplatte: 24 mn

Holzbalken: 120 x 180 mm, Achsabstand 500 mm

Dämmung / Einschub zwischen den Balken: Glaswolle 160 mm, ca. 3 kg/m² (zwischen Balken geklemmt)

Abhänger / Art der Unterkonstruktion: Siehe Tabelle FH. 4 bis 6 Abhängehöhe: Siehe Tabelle FH. 4 bis 6

Tab. FH. 4: Bewertete Luftschalldämm-Maße R_w/R_{wR} und Norm-Trittschallpegel L_{n.w}/L_{n.wR} (ohne Nebenwege) von Holzbalkendecken mit leichten Einschub

Deckenbekleidung/	Unterkonstruktion	Beplankung	Fußbodenaufbau			
Unterdecke			Ohne Schalldämm- Maß R (C I C tr) R dB	$\label{eq:Normtritt-schallpegel} \begin{aligned} & \text{Normtritt-schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\textbf{I}} \textbf{I} \textbf{C}_{\textbf{I},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \textbf{dB} \end{aligned}$	Mit Brio WF Schalldämm- Maß R (C I C tr) R dB	$\label{eq:Normtritt-schallpegel} \begin{aligned} & \text{Normtritt-schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\textbf{I}} \textbf{I} \textbf{C}_{\textbf{I},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \textbf{dB} \end{aligned}$
D150.de Direktbekleidung						
	Befestigungs- abstand Beplankung ≤ 1000 mm	25 mm Fireboard	47 (-2 I -5) 45	71 (-2 I -1) 74	55 (-2 I -7) 53	62 (-1 I 0) 65
	Entkopplung durch MW-Profil	25 mm Fireboard	58 (-6 I -12) 56	60 (0 2) 63	63 (-5 I -11) 61	51 (2 6) 54
D151.de Holz-Unterkonstru	ktion					
. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Traglatte 50 x 30 mm	12,5 mm Knauf Bauplatte	43 (-5 I -12) 41	76 (0 1 0) 79	50 (-7 I -14) 48	68 (1 2) 71
	direkt befestigt	2x 12,5 mm Knauf Bauplatte	45 (-5 I -12) 43	74 (0 1) 77	52 (-7 I -14) 50	65 (1 2) 68

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise

■ D150.de: T001-11.06, L021-06.10

■ D151.de: T002-11.06, L022-06.10

Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke B - leichter Einschub (Fortsetzung)

 $Tab.\ FH.\ 5:\ \ Bewertete\ Luftschalld\"{a}mm-Maße\ R_w/R_{w,R}\ und\ Norm-Trittschallpegel\ L_{n,w}/L_{n,w,R}\ (ohne\ Nebenwege)\ von\ Holzbalkendecken\ mit\ leichten\ Einschub$

Deckenbekleidung/	Unterkonstruktion	Beplankung	Fußbodenaufb	Fußbodenaufbau			
Unterdecke			Ohne Schalldämm- Maß R _w (C C _{tr}) R _{w,R} dB	$\label{eq:Normtritt-schallpegel} \begin{aligned} & \text{Normtritt-schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\textbf{I}} \textbf{I} \textbf{C}_{\textbf{I},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w},\textbf{R}} \\ & \textbf{dB} \end{aligned}$	Mit Brio WF Schalldämm- Maß R _w (CIC _{tr}) R _{w,R} dB	$\begin{tabular}{ll} Normtritt-\\ schallpegel & $L_{n,w}$\\ (C_1 \ I \ C_{1,50-2500}) & \\ L_{n,w,R} & \\ dB & \end{tabular}$	
D152.de Metall-Unterkonstr	uktion						
Direction of the control of the cont	Tragprofil CD 60/27	12,5 mm Knauf Bauplatte	56 (-6 I -12) 54	60 (2 9) 63	62 (-5 I -11) 60	54 (2 9) 57	
	Direktschwingab- hänger	2x 12,5 mm Knauf Bauplatte	60 (-5 I -11) 58	55 (2 10) 58	64 (-4 I -9) 62	49 (1 I 11) 52	
	Tragprofil CD 60/27 mit Direktschwingab- hänger	12,5 mm Knauf Bauplatte	-	-	60 (-6 I -12) 58	53 (2 I 12) 56	
		12,5 mm Silentboard	-	-	69,9 (-2,4 -8,0) 67	45,5 (0,6 I 9,8) 49	
70 mm		12,5 mm Diamant	59 (-6 I -12) 57	57 (2 9) 60	62 (-4 I -10) 60	50 (1 11) 53	
	+ 40 mm Dämmschicht G	2x 12,5 mm Knauf Bauplatte	-	-	63 (-5 I -11) 61	49 (1 I 11) 52	
		2x 12,5 mm Silentboard	-	-	72,2 (-2,0 I -7,4) 70	41,9 (0,7 9,4) 45	
		2x 12,5 mm Diamant	62 (-4 I -9) 60	52 (1 11) 55	64 (-3 I -8) 62	45 (1 12) 48	

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise T 003-11.06, L 023-06.10 Hinweise

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke B - leichter Einschub (Fortsetzung)

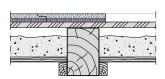
 $Tab.\ FH.\ 6:\ \ Bewertete\ Luftschalld\"{a}mm-Maße\ R_w/R_{w,R}\ und\ Norm-Trittschallpegel\ L_{n,w}/L_{n,w,R}\ (ohne\ Nebenwege)\ von\ Holzbalkendecken\ mit\ leichten\ Einschub$

Unterdecke	Unterkonstruktion	Beplankung	Fußbodenaufb	enaufbau			
			Ohne Schalldämm- Maß R _w (C I C _{tr})	Normtritt- schallpegel L _{n,w} (C _I I C _{I,50-2500})	Mit Brio WF Schalldämm- Maß R _w (C I C _{tr})	Normtritt- schallpegel L _{n,w} (C ₁ I C _{1,50-2500})	
			R _{w,R} dB	L _{n,w,R}	R _{w,R} dB	L _{n,w,R}	
D131.de Freitragende Decke	•						
		10.5 mm Knowf Downlotts	61 (-6 I -13) 59	56 (1 I 4) 59	65 (-3 I -8) 63	45 (1 I 9) 48	
		12,5 mm Knauf Bauplatte	60 ¹⁾ (-4 I -10) 58 ¹⁾	55 ¹⁾ (1 I 5) 58 ¹⁾	64 ¹⁾ (-4 I -9) 62 ¹⁾	46 ¹⁾ (1 8) 49 ¹⁾	
F	Doppelprofil	12,5 mm Diamant	63 (-4 I -10) 61	52 (2 5) 55	66 (-4 I -9) 64	43 (1 I 8) 46	
100 mm	CW 75 freitragend + 60 mm Dämmschicht G	18 mm Knauf Feuerschutzplatte	63 (-4 I -10) 61	51 (1 6) 54	64 (-3 -8) 62	42 (1 I 10) 45	
<u> </u>		2x 12,5 mm Knauf Bauplatte	63 (-4 I -10) 61	51 (1 5) 54	66 (-3 I -7) 64	41 (1 I 9) 44	
		2x 12,5 mm Diamant	65 (-4 I -10) 63	48 (1 6) 51	66 (-2 I -7) 64	38 (1 I 10) 41	
		25 mm Massivbauplatte	64 (-4 I -9) 62	49 (1 6) 52	65 (-2 I -7) 63	41 (1 8) 44	

¹⁾ Unterdeckenaufbau ohne zusätzliche Dämmschicht.

Die Werte gelten mit dem hier aufgeführten Aufbau. Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise T 004-11.06, L 024-06.10 Hinweise auf Seite 4 beachten.


Weitere Angaben zu Planung und Ausführung siehe

Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke C - schwerer Einschub - z. B. teilentkernte Altbaudecke

Fußbodenaufbau: Ohne Fußbodenaufbau bzw. Brio WF

Spanplatte: 24 mm

Holzbalken: 120 x 180 mm, Achsabstand 500 mm

Dämmung / Einschub zwischen den Balken: Deckeneinschub aus 24 mm Spanplatte mit 100 kg/m² Auflast aus Sand

Abhänger / Art der Unterkonstruktion: Siehe Tabelle FH. 7 bis 9
Abhängehöhe: Siehe Tabelle FH. 7 bis 9

Tab. FH. 7: Bewertete Luftschalldämm-Maße R_w/R_{w,R} und Norm-Trittschallpegel L_{n,w}/L_{n,w,R} (ohne Nebenwege) von Holzbalkendecken mit schwerem Einschub bei einer Altbausubstanz

Deckenbekleidung/ Unterdecke	Unterkonstruktion	Beplankung	Fußbodenaufb Ohne	Fußbodenaufbau Ohne Mit Brio WF			
			Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB	Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\begin{tabular}{ll} Normtritt-\\ schallpegel & $L_{n,w}$\\ (C_1 \ I \ C_{1,50-2500}) & \\ L_{n,w,R} & \\ dB & \end{tabular}$	
D151.de Holz-Unterkonstrul	ktion		ų,	ų, s	ų,	u.b	
Traglatte 50 x 30 mm direkt befestigt		12,5 mm Knauf Bauplatte	46 (-4 I -9) 44	74 (-1 -1) 77	52 (-5 I -12) 50	65 (1 1) 68	
		2x 12,5 mm Knauf Bauplatte	48 (-3 I -9) 46	71 (0 0) 74	-	-	
D152.de Metall-Unterkonstr	uktion						
	Tragprofil CD 60/27 mit Direktschwingab- hänger	12,5 mm Knauf Bauplatte	56 (-6 I -12) 54	62 (0 I 1) 65	61 (-5 I -11) 59	55 (3 5) 58	
		12,5 mm Diamant	-	59 (- <i>I</i> -) 62	-	52 (- I -) 55	
40 mm		2x 12,5 mm Knauf Bauplatte	60 (-5 I -11) 58	57 (0 4) 60	64 (-4 I -9) 62	49 (1 7) 52	
04		2x 12,5 mm Diamant	-	53 (- <i>I</i> -) 56	-	45 (- I -) 48	
		25 mm Massivbauplatte	-	-	58 ¹⁾ (-3 I -10) 56 ¹⁾	47 ¹⁾ (2 I 10) 50 ¹⁾	
		25 mm Massivbauplatte + 18 mm Knauf Feuerschutzplatte	-	_	60 ¹⁾ (-2 I -6) 58 ¹⁾	41 ¹⁾ (1 I 10) 44 ¹⁾	

¹⁾ Gemessen mit Trittschall-Dämmplatte 12-1 mm Mineralwolle, dynamische Steifigkeit s`75 MN/m³.

Kursive Werte: Ermittelt mit Hilfe der Korrekturtabelle FH. 14 Seite 32.

Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden

■ D151.de: T 002-11.06, L 022-06.10

■ D152.de: T 003-11.06, L 023-06.10

Hinweise auf Seite 4 beachten.

Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke C – schwerer Einschub – z. B. teilentkernte Altbaudecke (Fortsetzung)

Tab. FH. 8: Bewertete Luftschalldämm-Maße $R_w/R_{w,R}$ und Norm-Trittschallpegel $L_{n,w}/L_{n,w,R}$ (ohne Nebenwege) von Holzbalkendecken mit schwerem Einschub bei einer Altbausubstanz

Del elllet Allbausui							
Deckenbekleidung/	Unterkonstruktion	Beplankung	Fußbodenaufbau				
Unterdecke			Ohne		Mit Brio WF		
			Schalldämm-	Normtritt-	Schalldämm-	Normtritt-	
			Maß	schallpegel	Maß	schallpegel	
			R_{w}	L _{n,w}	$R_{\mathbf{w}}^{1)}$	$L_{n,w}^{-1)}$	
			(CIC _{tr})	(C ₁ I C _{1,50-2500})	(CIC _{tr})	$(C_1 I C_{1,50-2500})$	
			$R_{w,R}$	L _{n,w,R}	$R_{w,R}$	L _{n,w,R}	
			dB	dB	dB	dB	
D152.de Metall-Unterkonstru	uktion						
					60	47	
			_	_	(-3 I -9)	(2 11)	
					` 58 [′]	` 50 ´	
		12,5 mm Knauf Bauplatte			55 ²⁾	52 ²⁾	
					(-4 I -10)		
			_	-	(-41-10) 53 ²⁾	(1 I 6) 55 ²⁾	
	Tragprofil CD 60/27 mit Direktschwingab-				53-7		
		40				44	
		12,5 mm Diamant	-	_	-	(- 1 -)	
						47	
		2x 12,5 mm Knauf Bauplatte			60	42	
			_	_	(-3 I -8)	(1 14)	
					58	45	
					58	46 ²⁾	
			_	_	(-2 I -9)	(2 9)	
70 mm					56	49 ²⁾	
2	hänger					38	
WAY Y IRA	+	2x 12,5 mm Diamant				(– <i>I –</i>)	
	40 mm	ZX 12,3 IIIII Diamant	_	_	_	(- <i>1 -)</i> 41	
	Dämmschicht G						
	23				60	40	
			-	_	(-3 I -8)	(1 12)	
		25 mm Massivbauplatte			58	43	
		aaplatto			59 ²⁾	45 ²⁾	
			-	-	(-2 I -8)	(1 9)	
					57 ²⁾	48 ²⁾	
					61	37	
			_	_	(-2 -7)	(1 11)	
		25 mm Massivbauplatte			59	40	
		+			60 ²⁾	41 ²⁾	
		18 mm Knauf Feuerschutzplatte			(-2 I -7)	(2 10)	
			_	_	(-21-7) 58 ²⁾	(2 1 10) 44 ²⁾	
					⊃δ - /	44-1	

¹⁾ Gemessen mit Trittschall-Dämmplatte 12-1 mm Mineralwolle, dynamische Steifigkeit s`75 MN/m³.

Kursive Werte: Ermittelt mit Hilfe der Korrekturtabelle FH. 14 Seite 32.

Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Hinweise	Weit
	Deta

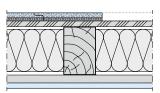
²⁾ Deckenaufbau ohne zusätzliche Dämmschicht.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke C – schwerer Einschub – z. B. teilentkernte Altbaudecke (Fortsetzung)

Tab. FH. 9: Bewertete Luftschalldämm-Maße $R_w/R_{w,R}$ und Norm-Trittschallpegel $L_{n,w}/L_{n,w,R}$ (ohne Nebenwege) von Holzbalkendecken mit schwerem Einschub bei einer Altbausubstanz

Unterdecke	Unterkonstruktion	Beplankung	Fußbodenaufb Ohne Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w} (C ₁ I C _{1,50-2500}) L _{n,w,R} dB	Mit Brio WF Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	$\label{eq:Normtritt-Schallpegel} Normtritt-schallpegel \\ \textbf{L}_{\textbf{n,w}} \\ (\textbf{C}_{\textbf{I}} \textbf{I} \textbf{C}_{\textbf{I},50\text{-}2500}) \\ \textbf{L}_{\textbf{n,w,R}} \\ \textbf{dB}$
D131.de Freitragende Decke	е					
		12,5 mm Knauf Bauplatte	64 (-2 I -7) 62	47 (1 6) 50	65 (-2 I -6) 63	41 (1 11) 44
100 mm	Doppelprofil CW 75 freitragend + 60 mm Dämmschicht G	12,5 mm Diamant	-	-	65 (-1 I -6) 63	40 (2 11) 43
		2x 12,5 mm Knauf Bauplatte	65 (-2 I -6) 63	45 (-1 5) 48	65 (-1 I -5) 63	38 (0 10) 41
		25 mm Massivbauplatte	-	-	65 (-2 I -6) 63	38 (0 l 11) 41


Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise
T 004-11.06, L 024-06.10

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke B - leichter Einschub - als Altbausubstanz

Fußbodenaufbau: Ohne Fußbodenaufbau bzw. Brio WF

Spanplatte: 24 mm

Holzbalken: 120 x 180 mm, Achsabstand 500 mm

Dämmung / Einschub zwischen den Balken: Glaswolle 160 mm, ca. 3 kg/m² (zwischen Balken geklemmt)

Putzschale: Gipsplatte 12,5 mm + Holzlatte 50 x 30 mm (repräsentiert Putzschale)

Abhänger / Art der Unterkonstruktion: Siehe Tabelle FH. 10, 11 Abhängehöhe: Siehe Tabelle FH. 10, 11

Tab. FH. 10: Bewertete Luftschalldämm-Maße $R_w/R_{w,R}$ und Norm-Trittschallpegel $L_{n,w}/L_{n,w,R}$ (ohne Nebenwege) von Holzbalkendecken mit leichten Einschub bei einer Altbausubstanz

bei einei Aitbausu	Dotanz					
Deckenbekleidung/	Unterkonstruktion	Beplankung	Fußbodenaufb	au		
Unterdecke			Ohne		Mit Brio WF	
			Schalldämm-	Normtritt-	Schalldämm-	Normtritt-
			Maß	schallpegel	Maß	schallpegel
			R_{w}	L _{n,w}	R_{w}	L _{n,w}
			(CIC _{tr})	(C ₁ I C _{1,50-2500})	(CIC _{tr})	$(C_1 \mid C_{1,50-2500})$
			R _{w,R}	L _{n,w,R}	R _{w,R}	L _{n,w,R}
			dB	dB	dB	dB
D152A.de Metall-Unterkons	truktion					
			52	67	56	61
		12,5 mm Knauf Bauplatte	(-7 I -14)	(2 4)	(-7 I -13)	(2 6)
	Tragprofil		50	70	54	64
	CD 60/27			64		58
	mit	12,5 mm Diamant	_	(-1-)	_	(- 1 -)
	Direktschwing-	,.		67		61
20 mm	abhänger		57	61	60	56
	+	2x 12,5 mm Knauf Bauplatte	(-7 I -14)	(3 8)	(-8 I -14)	(3 9)
	40 mm	ZX 12,0 mm randa Baapiatto	55	64	58	59
	Dämmschicht G		00	57	30	52
	Barring or north	2x 12,5 mm Diamant				
		2x 12,5 mm Diamant	_	(– I –) 60	_	(– I –) 55
D424A do Froitremendo Dec	l-a			00		55
D131A.de Freitragende Dec	Ke		F7	04	04	
		40.5 K (D L II	57	61	61	55
		12,5 mm Knauf Bauplatte	(-8 I -15)	(3 6)	(-6 I -13)	(3 7)
			55	64	59	58
				58		52
		12,5 mm Diamant	-	(- I -)	-	(- <i>I</i> -)
				61		55
	Doppelprofil		61	55	63	51
XXXXXX E	CW 75	2x 12,5 mm Knauf Bauplatte	(-6 I -13)	(3 8)	(-4 I -10)	(3 7)
100 mm	freitragend		59	58	61	54
9	+			51		47
•	50 mm	2x 12,5 mm Diamant	_	(– 1 –)	_	(– 1 –)
	Dämmschicht G			54		50
			60	57	63	51
		18 mm Knauf Feuerschutzplatte	(-6 I -13)	(2 7)	(-5 I -11)	(3 9)
		, and the second second	58	60	61	54
			61	54	63	49
		25 mm Massivbauplatte	(-7 I -13)	(3 9)	(-3 I -9)	(3 10)
		macorroadplatto	59	57	61	52
			55	01	J 1	02

Kursive Werte: Ermittelt mit Hilfe der Korrekturtabelle Seite 32.

Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise

- D152A.de: T 005-11.06, L 025-06.10
- D131A.de: T 006-11.06, L 026-06.10

Hinweise auf Seite 4 beachten.

Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau – Holzbalkendecke B – leichter Einschub – als Altbausubstanz (Fortsetzung)

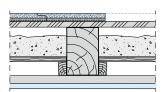
Tab. FH. 11: Bewertete Luftschalldämm-Maße $R_w/R_{w,R}$ und Norm-Trittschallpegel $L_{n,w}/L_{n,w,R}$ (ohne Nebenwege) von Holzbalkendecken mit leichten Einschub bei einer Altbausubstanz

Deckenbekleidung/ Unterdecke	Unterkonstruktion	Beplankung	Fußbodenaufba Ohne Schalldämm- Maß R _w (C I C _{tr}) R _{w,R} dB	Normtritt- schallpegel L _{n,w} (C _I I C _{I,50-2500}) L _{n,w,R} dB	Normtritt- schallpegel $\mathbf{L}_{\mathbf{n},\mathbf{w}}$ $(\mathbf{C_1} \ \mathbf{I} \ \mathbf{C_{1,50-2500}})$ $\mathbf{L}_{\mathbf{n},\mathbf{w},\mathbf{R}}$ \mathbf{dB}	
K219A.de Freitragende Fire	board-Decke					
100 mm	Doppelprofil CW 75 freitragend + 50 mm Dämmschicht G	20 mm Fireboard	59 (-7 l -13) 57	57 (2 9) 60	62 (-4 I -10) 60	52 (3 9) 55

Kursive Werte: Ermittelt mit Hilfe der Korrekturtabelle Seite 32.

Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Schallschutz-Nachweise T 006-11.06, L 026-06.10 Hinweise


Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Geprüfte Luft- und Trittschalldämmung

Prüfaufbau - Holzbalkendecke C - schwerer Einschub - als Altbausubstanz

Fußbodenaufbau: Ohne Fußbodenaufbau bzw. Brio WF

Spanplatte: 24 mm

Holzbalken: 120 x 180 mm, Achsabstand 500 mm

Dämmung / Einschub zwischen den Balken: Deckeneinschub aus 24 mm Spanplatte mit 100 kg/m² Auflast aus Sand Putzschale: Gipsplatte 12,5 mm + Holzlatte 50 x 30 mm (repräsentiert Putzschale)

Abhänger / Art der Unterkonstruktion: Siehe Tabelle FH. 12

Abhängehöhe: Siehe Tabelle FH. 12

Tab. FH. 12: Bewertete Luftschalldämm-Maße R_w/R_{w,R} und Norm-Trittschallpegel L_{n,w}/L_{n,w,R} (ohne Nebenwege) von Holzbalkendecken mit schwerem Einschub bei einer Altbausubstanz

Unterdecke	Unterkonstruktion	Beplankung	Fußbodenaufb	au		
			Ohne Schalldämm- Maß R (C I C tr) R dB	$\label{eq:Normtritt-Schallpegel} \begin{aligned} & \text{Normtritt-Schallpegel} \\ & \textbf{L}_{\textbf{n,w}} \\ & (\textbf{C}_{\textbf{I}} \textbf{I} \textbf{C}_{\textbf{I},50\text{-}2500}) \\ & \textbf{L}_{\textbf{n,w,R}} \\ & \textbf{dB} \end{aligned}$	Mit Brio WF Schalldämm- Maß R (C I C tr) R dB	$\label{eq:Normtritt-schallpegel} \begin{aligned} & \text{Normtritt-schallpegel} \\ & \textbf{L}_{\text{n,w}} \\ & (\text{C}_{\text{I}} \text{ I C}_{\text{I,50-2500}}) \\ & \text{L}_{\text{n,w,R}} \\ & \text{dB} \end{aligned}$
D131A.de Freitragende Dec	ke					
		12,5 mm Knauf Bauplatte	60 (-5 I -11) 58	55 (2 5) 58	64 (-4 I -10) 62	50 (3 l 6) 53
100 mm	Doppelprofil CW 75 freitragend	12,5 mm Diamant	-	52 (- <i>I</i> -) 55	-	47 (- <i>I</i> -) 50
	+ 60 mm Dämmschicht G	2x 12,5 mm Knauf Bauplatte	63 (-3 I -9) 61	51 (2 5) 54	65 (-3 I -8) 63	45 (2 6) 48
		2x 12,5 mm Diamant	-	47 (- I -) 50	-	41 (- I -) 44

Kursive Werte: Ermittelt mit Hilfe der Korrekturtabelle Seite 32.

Bei Abweichungen kann die Korrekturtabelle FH. 14 Seite 32 verwendet werden.

Konstruktionsbedingte Korrekturwerte

Tab. FH. 13: Konstruktionsbedingte Korrekturwerte – Prüfaufbau Holzbalkendecke A

Konstruktive Maßnahmen	Korrekturwert Norm-Trittschallpegel
Deckenbekleidung/Unterdecke	
CD 60/27 mit Direktschwingabhänger anstelle Holzlatte mit Direktschwingabhänger	0 dB
Holzlatte 60 x 40 mit Direktschwingabhänger anstelle Holzlatte 50 x 30 mit Direktschwingabhänger	0 dB
Direktabhänger anstelle Direktschwingabhänger	4 bis 6 dB
Federschiene anstelle Holzlatte mit Direktschwingabhänger	-1 dB
Fußboden	
≥ 30 mm Knauf Trockenschüttung PA unter Trittschalldämmplatten	-3 bis -4 dB

Tab. FH. 14: Konstruktionsbedingte Korrekturwerte – Prüfaufbau Holzbalkendecken B und C

ab. FR. 14. Notistruktionspedingle Notiektarweite – Fraiadipad Holzbarkeitaeckeit B dita C	
Konstruktive Maßnahmen	Korrekturwert Norm-Trittschallpege
Deckenbekleidung/Unterdecke	
Silentboard anstelle Knauf GKB (bei Verwendung von Direktschwingabhänger als Entkoppelungselement)	-5 dB (einlagig) -6 dB (zweilagig)
Silentboard + Diamant Platten 12,5 mm anstelle 2x Knauf Bauplatte	-3 dB
20 bis 25 mm Fireboard anstelle 18 mm Knauf Feuerschutzplatte	0 dB
Diamant Platten anstelle Knauf Bauplatten bei gut entkoppelten Deckenbekleidungen/Unterdecken (abgehängt mit Direktschwing- abhänger, freitragende Decke); Luftschalldämmung wird ca. 2 bis 3 dB verbessert	-3 dB (einlagig) -4 dB (zweilagig)
Zusätzlicher Einbau von Mineralwolle bei Holzbalkendecke B (alte Bekleidung z.B. Putz entfernt); _uftschalldämmung wird ca. 1 dB verbessert	0 dB
Zusätzlicher Einbau von mindestens 40 mm Mineralwolle bei Holzbalkendecke C (alte Bekleidung z. B. Putz entfernt) Luftschalldämmung wird ca. 3 bis 4 dB verbessert	-4 dB
Federschiene anstelle CD 60/27 mit Direktschwingabhänger	-1 dB
Direktabhänger anstelle Direktschwingabhänger	4 bis 6 dB
Fußboden	
20 mm EPS Trittschalldämmplatte anstelle 10 mm WF Trittschalldämmplatte	0 dB
Frittschalldämmplatte 12/1 mm Mineralwolle (z. B. Knauf Insulation TP-GP 12-1) anstelle 10 mm WF Trittschalldämmplatte n Kombination mit schlecht entkoppelten Deckenbekleidungen (Holzlattung genagelt) bei Holzbalkendecke B	-1 bis -2 dB
Trittschalldämmplatte 12/1 mm Mineralwolle (z. B. Knauf Insulation TP-GP 12-1) anstelle 10 mm WF Trittschalldämmplatte n Kombination mit gut entkoppelten Deckenbekleidungen/Unterdecken (abgehängt mit Direktschwingabhänger, freitragende Decke) pei Holzbalkendecke B	1 bis 3 dB
Trittschalldämmplatte 12/1 mm Mineralwolle (z. B. Knauf Insulation TP-GP 12-1) anstelle 10 mm WF Trittschalldämmplatte pei Holzbalkendecke C	-1 bis -3 dB
≥ 30 mm Knauf Trockenschüttung PA unter Trittschalldämmplatten	-4 dB
≥ 50 mm Knauf EPO-Leicht unter Trittschalldämmplatten	-2 dB
23 mm Brio anstelle 18 mm Brio	0 dB
Aufdoppelung mit einer 2. Lage Fertigteilestrich-Elemente (Brio 18 oder Brio 23) ohne Verklebung	-2 bis -3 dB
35 mm Fließestrich + 20/2 mm Mineralwolle anstelle 18 mm Brio + 10 mm WF; Luftschalldämmung wird ca. 3 bis 4 dB verbessert	-2 bis -3 dB

Hinweise

Grundlage für die ab Seite 20 angegebenen Schalldämmwerte sind umfangreiche Messungen der Schalldämmung an typischen Holzbalkendecken, die den Einfluss von Konstruktionsänderungen im Boden- und Unterdeckenbereich zeigen. Die Prüfaufbauten A, B und C unterscheiden sich im Wesentlichen bei Balkenquerschnitt, Balkenabstand, Dämmschichtdicke, sowie der Bau-

Die Prüfaufbauten A, B und C unterscheiden sich im Wesentlichen bei Balkenquerschnitt, Balkenabstand, Dämmschichtdicke, sowie der Bauweise des Deckeneinschubes (leicht/schwer). Der Einfluss verschiedener Aufbauten der Deckenbekleidung/Unterdecke bei Variation der Unterkonstruktion, Beplankung, Einbauhöhe usw. wurde ebenfalls untersucht.

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holzbalkendecken-Systeme D15.de.

Konstruktive und technologische Anforderungen und Besonderheiten

Konstruktive und technologische Anforderungen und Besonderheiten

Tab. FM. 9: Bewertete Trittschallpegelminderung ΔL_w von weichfedernden Bodenbelägen bei Massivdecken nach DIN 4109-34:2016-07 [1]

Deckenauflagen, weichfedernde Bodenbeläge	Norm	ΔL_{w} in dB	Zeile
Linoleum-Verbundbelag	DIN EN 687	14 1) 2)	1
PVC-Verbundbeläge			
PVC-Verbundbelag mit genageltem Jutefilz als Träger	DIN EN 650	13 1) 2)	2
PVC-Verbundbelag mit Korkment als Träger	DIN EN 652	16 ^{1) 2)}	3
PVC-Verbundbelag mit Unterschicht aus Schaumstoff	DIN EN 651	16 ^{1) 2)}	4
PVC-Verbundbelag mit Synthesefaser-Vliesstoff als Träger	DIN EN 650	13 1) 2)	5
Textile Fußbodenbeläge nach DIN ISO 2424 3)			
Nadelvlies, Dicke = 5 mm		20	6
Polteppiche 4)			
Unterseite geschäumt, Normdicke a ₂₀ = 4 mm	ISO 1765	19	7
Unterseite geschäumt, Normdicke a ₂₀ = 6 mm	ISO 1765	24	8
Unterseite geschäumt, Normdicke a ₂₀ = 8 mm	ISO 1765	28	9
Unterseite ungeschäumt, Normdicke a ₂₀ = 4 mm	ISO 1765	19	10
Unterseite ungeschäumt, Normdicke a ₂₀ = 6 mm	ISO 1765	21	11
Unterseite ungeschäumt, Normdicke a ₂₀ = 8 mm	ISO 1765	24	12

- 1) Die Bodenbeläge müssen durch Hinweis auf die jeweilige Norm gekennzeichnet sein. Die maßgebliche bewertete Trittschallpegelminderung ΔL_w muss auf dem Erzeugnis oder der Verpackung angegeben sein.
- 2) Die in den Zeilen 1 bis 5 angegebenen Werte sind Mindestwerte; sie gelten nur für aufgeklebte Bodenbeläge.
- DIN EN 10204 ist zu berücksichtigen. Die textilen Bodenbeläge müssen auf dem Produkt oder auf der Verpackung mit dem entsprechenden ΔL_w der Spalte 2 ausgeliefert werden.
- 4) Pol aus Polyamid, Polypropylen, Polyacrylnitril, Polyester, Wolle und deren Mischungen.

Konstruktive und technologische Anforderungen und Besonderheiten bei Massivdecken

Estriche und Unterdecken mit Anforderungen an den Schallschutz

- Bei der Komplettierung von Massivdecken mit Unterdecken sind besonders im Bestand zur Gewährleistung der mit dieser Maßnahme gewünschten Funktion dieser Decke (i. d. R. Trennung von zwei Nutzungseinheiten) insbesondere die Brandschutzforderungen (Feuerwiederstand) bereits in der Planungsphase zu beachten.
- Zur Trittschalldämmverbesserung schwimmende Estriche als Mörtelestrich oder Fertigteilestrich wählen
 - Zur Beachtung: bei Einsatz von Fertigteilestrichen kann die Bauzeit verkürzt werden (keine Austrocknungszeit!).
- Schwimmende Estriche sind schallbrückenfrei einzubauen (durchgehende vollentkoppelnde Randdämmstreifen und durchgehende Dämmschichten). Zur Beachtung: Die angegebenen dynamischen Steifigkeiten der Dämmstoffe gelten nur, wenn die gesamte Deckenfläche ohne Unterbrechungen und Einschnitte bedeckt ist.
- Bekleidungen/Unterdecken sind für Schallschutzanforderungen maximal zu entkoppeln (z. B. Direktschwingabhänger oder Nonius-Schwing-Oberteil mit Gummipuffer). Der Abstand zwischen Unterdeckenschale (Beplankungslage) und der Massivdecke sollte mind. 40 mm betragen. Eine ideale Entkopplung ist vorallem mit freitragenden Decken möglich.

Direktschwingabhänger

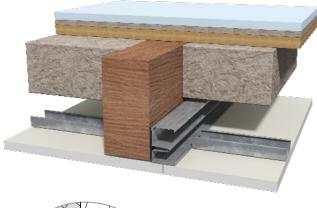
Direktschwingabhänger entsprechend der erforderlichen Einbauhöhe abschneiden oder umbiegen.

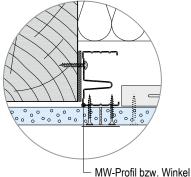
Nonius-Schwing-Oberteil

Abhänger für größere Abhanghöhen mit Entkopplungselement

- Im Deckenhohlraum Faserdämmstoffe (Steinwolle, Glaswolle, Holzfaserdämmstoff usw.) zur maximalen Schalldämmung als Absorptionsmaterial anordnen.
 - Zur Beachtung: Dämmstoffdicke sollte ≥ 30 mm betragen.
- Bei schallschutztechnisch ungünstigen Flankenbedingungen (massive Anschlusswände geringer Masse) evtl. Flanken mit Vorsatzschalen schalltechnisch verbessern.
- Dichtheit der Massivdecke ist Voraussetzung für einen guten Schallschutz; evtl. Durchbrüche und Durchführungen dicht schließen.
- Unterdecken sind dicht anzuschließen; bei unebenen Anschlusswänden vorzugsweise Dichtkitte verwenden.
- Deckeneinbauten (z. B. Revisionsklappen) wirken sich bei dichtem Einbau nicht auf die Schalldämmung aus.
- Wird ein weichfedernder Bodenbelag (Tab. FM. 9) auf einen schwimmenden Boden angeordnet, dann ist als ΔL_w nur der höhere Wert, entweder des schwimmenden Estrichs oder des weichfedernden Bodenbelages, im Nachweis zu berücksichtigen.

Zur Beachtung: Zur Erfüllung der Mindestschallschutzforderungen im Wohnungsbau nach DIN 4109-1:2018-01 dürfen wegen der einfachen Austauschbarkeit Bodenbeläge im Nachweisverfahren nicht berücksichtigt werden.


KNAUF


Konstruktive und technologische Anforderungen und Besonderheiten

Holzbalkendecken

Konstruktive und technologische Anforderungen und Besonderheiten bei Holzbalkendecken

Abb. FH. 2: Raumsparende schallschutztechnisch hochwertige Bekleidung von Holzbalkendecken mit MW-Profilen als Tragprofil

Deckenbekleidungen und Unterdecken unter Holzbalkendecken

- Brandschutztechnische Bemessung/Konstruktionswahl (primäre Aufgabe) möglichst so ausführen, dass gleichzeitig höchstmögliche Verbesserung des Schallschutzes erzielt wird (entkoppeln, dämmen).
- Bei der Sanierung Entscheidung treffen "entkernen und Neuaufbau" oder "additive Ertüchtigung" (Erhaltungszustand, Statik, usw.); Statischer Nachweis sollte unbedingt durchgeführt werden.
- Abhängung von Unterdecken generell an den tragenden Holzbalken; Eindringtiefe der Schrauben mind. 35 mm Zur Beachtung: bei Verschraubung in "verdeckte" Holzbalken bei Sanierung sollte die Schraubenlänge so gewählt werden, dass theoretisch eine Eindringtiefe von ca. 50 mm entsteht (Sicherheit).
- Die Anforderungen an den Trittschallschutz sind bei Holzbalkendecken schwieriger zu erfüllen als der geforderte Luftschallschutz gleicher Anforderungskategorie.
 - Zur Beachtung: Erfahrungsgemäß kann davon ausgegangen werden, dass bei ausreichendem Trittschallschutz der Luftschallschutz der Decke i. d. R. ebenfalls erreicht wird. Deshalb wird in den meisten Fällen die Decke nach der Trittschalldämmung bemessen.
- Ausbildung eines optimalen Feder-Masse-Systems ermöglicht gute Schalldämmwerte.
 - Zur Beachtung: Kombination schwimmender Estrich und entkoppelte Bekleidung/Unterdecke bringt max. Schalldämmung.
- Holzbalkendecken mit an den Deckenbalken befestigter
 Deckenbekleidung erreichen allein durch schwimmende Estriche ohne zusätzliche Deckenbeschwerungen keinen ausreichenden Schallschutz; die Deckenschalen sind generell zu entkoppeln.
- Beste Entkopplung der Unterdecke wird durch freitragende Unterdecken erreicht und ermöglichen gegenüber der Direktbefestigung der Platten an den Holzbalken ohne Raumhöhenverlust eine Verbesserung von ΔL_w von ca. 10 dB.

- Je größer der Deckenhohlraum (Abhängehöhe), desto besser ist die Schalldämmung.
 - Zur Beachtung: der Deckenhohlraum ist mit offenporigem Dämmstoff (Faserdämmstoff) zu dämpfen, Dämmstoffdicke möglichst ≥ 40 mm.
- Plattenaufdopplungen sowie Spezialplatten (z. B. Diamant/Silentboard)
 bringen gegenüber einfacher Beplankung mit 12,5 mm Standardplatten eine Trittschallverbesserung bis zu 11 dB.
- Holzbalkendecken mit unterseitig sichtbar bleibenden Balken sind in schallschutztechnischer Sicht äußerst problematisch.
- Schwimmende Fließestriche bringen auf Holzbalkendecken ohne zusätzliche Beschwerungen eine Trittschallverbesserung von ΔL_w bis zu 15 dB (Masse ca. 75 kg/m²), Fertigteilestriche bis zu 10 dB (Masse ca. 30 kg/m²)
- Für Holzbalkendecken sind Fertigteilestriche ideal geeignet (trockene Bauausführung, in Verbindung mit Deckenbekleidungen/Unterdecken ausreichende Trittschallverbesserung).
- Die für Massivdecken ermittelte Verbesserungsmaße für verschiedene Deckenauflagen, z. B. schwimmende Estriche, sind auf Konstruktionen mit Holzbalken nicht übertragbar, da die hier mit den gleichen Aufbauten erreichten Verbesserungen bedeutend geringer sind.

Gut zu wissen

 Weitere konstruktive und schallschutztechnische Zusammenhänge sind im Knauf Fachbuch "Sanierung mit Trockenbau" [2] dargestellt.

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 lphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke **Knauf PFT**

Maschinentechnik und Anlagenbau

Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

Trockenbau-Systeme

SS06.de

Knauf Bauphysik

04/2040

Schallschutz mit Knauf

Außenbauteile

Inhalt

Nutzungshinweise	
Hinweise	4
Hinweise zum Dokument	4
Bestimmungsgemäßer Gebrauch von Knauf Systemen	4
Hinweise zum Schallschutz	4
Brandschutz	4
W55.de Knauf Holztafelbau-Wände	
Systemübersicht	6
W551.de Holztafelbau-Außenwand	8
Systemvarianten	8
W552.de Holztafelbau-Außenwand mit entkoppelter Beplankung	11
Systemvarianten	11
W553.de Holztafelbau-Gebäudeabschlusswand	12
Systemvarianten	12
Auswirkung des Systemaufbaus auf den Schallschutz	
W554.de Holztafelbau-Gebäudeabschlusswand mit entkoppelter Bepl.	14
Systemvarianten	14
Außenwand mit AQUAPANEL	
WM411C.de – Doppelständerkonstruktion	16
Systemübersicht	16
Systemvariante	16
D61.de Knauf Dachgeschoss-Systeme	
Systemübersicht	18
D610.de Ohne Unterkonstruktion	19
Systemvariante	19
D611.de Holz-Unterkonstruktion	20
Systemvarianten	20
D612.de Metall-Unterkonstruktion CD-Profil	22
Systemvarianten	22
Schallschutzaufrüstung	24
Prüfaufbauten – Luftschalldämmung	26
Prüfaufbauten – Schallschutzaufrüstung	27

Nutzungshinweise

Hinweise

Hinweise zum Dokument

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Verweise auf weitere Dokumente

Weitere Broschüren des Knauf Schallschutzordners:

Bauakustik

- Grundlagen SS01.de
- Anforderungen an die Bauteile SS02.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Decken SS05.de
- Raum-in-Raum Systeme SS07.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Detailblätter

- Knauf Holztafelbau-Wände W55.de
- Knauf Dachgeschoss-Systeme D61.de

Technische Broschüren

- Knauf Diamant-Systeme DIA01.de
- Knauf Silentboard-Systeme SIB01.de
- Knauf Außenwand SKA.de

Ordner

■ Brandschutz mit Knauf BS1.de

Symbole in der Technischen Broschüre

In diesem Dokument werden folgende Symbole verwendet.

Unterkonstruktionsabstände

(b) Achsabstand Traglatte/Tragprofil (Spannweite Beplankung)

Begriffsdefinition

- HWP = Holzwerkstoffplatte
- WDVS = Wärmedämm-Verbundsystem
- Entkoppelte Beplankung:

Als entkoppelte Beplankung wird eine zusätzliche Unterkonstruktionsebene direkt auf dem Holzständer oder Sparren, die in ihrer Funktion für verbesserten Schallschutz sorgt, bezeichnet. Die Konstruktion besteht aus Federschiene (Mineralwolle einsetzen um Klappern zu vermeiden) oder Holzlatte und kann ohne/mit Dämmschicht in der zusätzlichen Ebene ausgeführt sein.

Installationsebene:

Als Installationsebene wird eine zusätzliche Unterkonstruktionsebene, die einem Wandsystem vorgesetzt wird und in ihrer Funktion für verbesserten Schallschutz sorgt, bezeichnet. Die Konstruktion besteht aus Federschiene (Mineralwolle einsetzen um Klappern zu vermeiden) oder Holzlatte und kann ohne/mit Dämmschicht in der Ebene ausgeführt sein.

Bestimmungsgemäßer Gebrauch von Knauf Systemen

Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. freigegeben sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

Hinweise zum Schallschutz

R_w = Bewertetes Schalldämm-Maß in dB ohne Schallübertragung über flankierende Bauteile

C = Spektrum-Anpassungswerte

bzw. Werte in dB, die zu Einzahlangaben addiert werden können, um C_{tr} Merkmale bestimmter Schallspektren zu berücksichtigen.

Index R = Dient zur Unterscheidung der Rechenwerte von den Prüfstandswerten

Dämmschicht **G** (Mineralwolle-Dämmschicht nach EN 13162, nichtbrennbar), längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 5 kPa·s/m²; z. B.

Knauf Insulation Trennwand-Dämmplatte TI 140 T

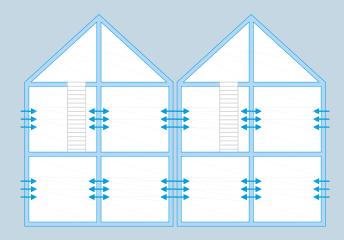
Die Nachweisführung der neuen DIN 4109:2018:01 erfolgt nicht mit den Rechenwerten $R_{\rm w,R}$, sondern mit den Prüfstandwerten $R_{\rm w}$ auf eine Nachkommastelle genau. Erst am Ende der Prognose unter Berücksichtigung aller an der Übertragung beteiligten Begrenzungsflächen (Flanken) wird in Abhängigkeit der Art des trennenden Bauteils eine Prognoseunsicherheit mit einbezogen.

Übergangsweise werden in den Knauf Detailblättern sowohl die Prüfstandswerte als auch die bisher ausgewiesenen Rechenwerte angegeben.

Werden anstelle der bewerteten Prüfstandswerte Werte angegeben, die auf rechnerischen Prognosen basieren bzw. von gemessenen Prüfstandswerten abgeleitet wurden, erfolgt die Angabe ohne Nachkommastelle.

Brandschutz

Hinweise

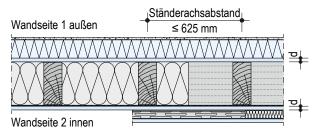

Für den Brandschutz sind ggf. zusätzliche Maßnahmen (z. B. zusätzliche Anforderungen an die Dämmschicht) erforderlich. Entsprechende Angaben im Brandschutzordner/Detailblatt des jeweiligen Systems sind zu berücksichtigen.

Informationen zu den Verwendbarkeitsnachweisen finden Sie in den Knauf Detailblättern der entsprechenden Systeme.

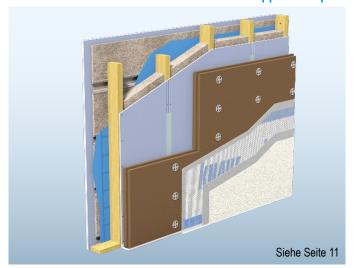
Außenwände mit Gipsplatten Holztafelbauwände

Die Holztafelbauweise wird im kompletten Wandsegment des Holzbaus eingesetzt. Je nach Anwendungsbereich (Innenwand, Außenwand oder Gebäudeabschlusswand) werden differenzierte Anforderungen an die akustische Qualität gestellt. Durch die Anwendung unterschiedlicher Plattenqualitäten sowie durch das Vorsehen von Entkoppelungsmaßnahmen und/oder Dämmstoffeinlagen in den Installationsebenen bzw. zwischen den Gebäudeabschlusswänden sind sämtliche Anforderungen betreffend des Schallschutzes bis hin zu den höchsten Schallschutzklassen realisierbar.

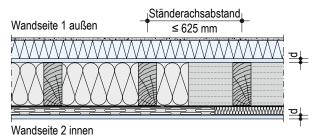
W55.de Knauf Holztafelbau-Wände


Systemübersicht

W551.de Holztafelbau-Außenwand



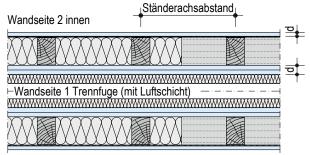
Z. B. W551.de, Außenwand – mit Holzverkleidung



- Einfachständerwerk
- Außenseitiger Wetterschutz
- Bauschalldämm-Maß R_w : \geq 36 bis 62 dB
- Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m auf Anfrage
- Feuerwiderstand bis F90
- Hoher Vorfertigungsgrad möglich

W552.de Holztafelbau-Außenwand mit entkoppelter Beplankung

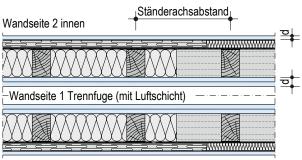
Z. B. W552.de, Außenwand – mit Knauf WDVS


- Einfachständerwerk
- Außenseitiger Wetterschutz
- Bauschalldämm-Maß R_w : ≥ 50 bis 70 dB
- Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m auf Anfrage
- Feuerwiderstand bis F90

W553.de, Gebäudeabschlusswand



Wandseite 2 innen


■ Einfachständerwerk

- Bauschalldämm-Maß R_w: 64 bis 77 dB
- Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m auf Anfrage
- Feuerwiderstand: F90 von außen / F30 von innen

W554.de Holztafelbau-Gebäudeabschlusswand mit entkoppelter Beplankung

W554.de, Gebäudeabschlusswand mit entkoppelter Beplankung

Wandseite 2 innen

- Einfachständerwerk
- Mit einseitig entkoppelter Beplankung auf Federschiene
- Bauschalldämm-Maß R_w: 72 dB
- Maximal zulässige Wandhöhe 3,00 m, höhere Wandhöhe bis max. 5,00 m auf Anfrage
- Feuerwiderstand: F90 von außen / F30 von innen

W55.de Knauf Holztafelbau-Wände

W551.de Holztafelbau-Außenwand

Systemvarianten

		ankun dseite		≏n		Wan	dseite	2 innei	Holzständer	Schallschu	Schallschutz							
			i dalo	511			acito	2 1111101				Dämm- schicht	Schalldämm-Maß					
Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano (I)	Knauf Feuerschutzplatte (I)	Massivbauplatte (I)	Diamant / Diamant X	Mindest- Dicke	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Mindest- Dicke	Mindest- Querschnitt b x h	Mindest- Dicke	R _w	Spektrum- Anpassungswert		$R_{w,R}$		
Feue	Feue	Knau	Mass	Diam	d mm	Feue	Knau	Mass	Diam	d mm	mm	C _{tr} dB	dB					
W551.de	Holzt	afelbaı	ı-Auß	enwar	nd mit individ	dueller	n Wett	erschi	utzsys	stem								
F30	•				12,5	•				12,5	60 x 90	80	39	-2	-5	37		
F30				•	12,5				•	12,5	00 X 90	80	41	-2	-3	39		
			•		25			•		25	60 x 90	80	36	-2	-4	34		
F00				•	12,5				•	12,5		80	41	-1,7	-4,6	39		
F60	•				2x 12,5	•				2x 12,5	60 x 100	80	43	1,6	-6,3	41		
				•	2x 12,5				•	2x 12,5		80	45,4	-1,3	3,7	43		
F00				•	2x 15				•	2x 15	60 x 100	80	44,9	-1,9	-6,0	42		
F90				● 1)	2x 18				● ¹⁾	2x 18	60 x 90	80	44,2	-1,8	-6,2	42		

Angaben der Tabelle gelten ohne Wetterschutz, ein Wetterschutzsystem ist zwingend erforderlich und kann individuell nach Anforderungen gewählt werden. Eine vorgehängte Fassade sowie ein Blendmauerwerk haben keinen negativen Einfluss auf die Schalldämmung. Schalldämmung in Verbindung mit einem Wärmedämm-Verbundsystem siehe Seite 9.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Schallschutz-Nachweise L 005-10.07 / L 011-10.07 / L 045-04.06 / L 049-02.17

Hinweise

Hinweise auf Seite 4 beachten.

¹⁾ Nur Diamant X mit Plattenbreite 1250 mm möglich, Mindestabnahmemengen anfragen.

⁽I) Gipskern spezialimprägniert

Systemvarianten (Fortsetzung)

Oystei		lank					,							Holzständer	Schallschu	utz			
	War	ndsei	te 1	außer	า			War	ndsei 2	te 2 ii	nnen				Dämm- schicht	Schalld	ämm-Maß	3	
Feuerwiderstandsklasse	WARM-WAND Natur D	WARM-WAND Natur T	Heraklith BM	Heraklith A2-BM	Fektalan A2-FB/HB	Diamant / Diamant X	Mindest- Dicke	AGEPAN® OSB/3 PUR	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Mindest- Dicke	Mindest- Querschnitt b x h	Mindest- Dicke	R _w	Spektrum- Anpassungswert		R _{w,R}
Feu	×	¥	Her	Her	Tek	Dia	mm	AG	Feu	Α'n	Mas	Dia	mm	mm	mm	dB	dB	dΒ	dB
W551.	de Ho	olztaf	elbaı	u-Auí	Senw	and r	mit Knauf W	ARM-	WAN	D Na	tur D	Diffu	therm (WDV	S)					
	•					•	60 + 12,5					•	12,5			48	-2	-5	46
F30	•					•	60 + 12,5					•	2x 12,5	60 x 140	140	52	-2	-6	50
	•					•	60 + 12,5			•			2x 18			48	-1	-6	46
F60	•					•	60 + 12,5					•	12,5	60 x 140	140	48	-2	-5	46
W551.	de Ho	olztaf	elbaı	u-Auí	Senw	and r	mit Knauf W	ARM-	WAN	D Na	tur T	AGE	PAN® THD P	utz 050 (WDVS)				
		•					40					•	12,5			47	-2	-5	45
		•					40					•	2x 12,5	00 440	4.40	50	-2	-5	48
-		•					40				•		25	60 x 140	140	44	-1	-7	42
		•					40			•			2x 18			47	-2	-8	45
F30		•					40	•				•	15 + 12,5	60 x 140	140	47	-1	-7	45
W551.	de Ho	olztaf	elba	u-Auí	Senw	and r	nit Knauf IN	SULA	TION	l Hera	aklith/	Tekta	ılan mit Armie	erputz					
-					•		60					•	2x 12,5 ¹⁾	60 x 200	200	51	-2	-6	49

^{1) 2.} Plattenlage in 1. Lage verklammert.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Hinweise auf Seite 4 beachten.

Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

W55.de Knauf Holztafelbau-Wände

W551.de Holztafelbau-Außenwand

Systemvarianten (Fortsetzung)

		Seplankung Vandseite 1 außen Wandseite 2 innen								en	Holz- ständer	-	tallat	cung tions-	Schallschutz						
Feuerwiderstandsklasse	WARM-WAND Natur D	WARM-WAND Natur T	Heraklith BM	Heraklith A2-BM	Tektalan A2-FB/HB	Diamant / Diamant X	Mind Dicke	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant / Diamant X	Mind Dicke	Mind Querschnitt b x h	Feuerschutzplatte Knauf Piano	Diamant / Diamant X	Mind Dicke	Dämmschicht Mind Dicke	Schall	dämm-M Spektru Anpass wert	um-	R _{w,R}
Fe	≱	W	He	문	<u>-</u>	ä	mm	Fe	Α	Ma	Ö	mm	mm	Fe	Ö	mm	mm	dB	dB	dB	dB
							and mit K rschiene		WAI	RM-V	VAN	D Natur D	Diffutherm (\	VDV:	S)						
F30	•					•	60 + 12,5				•	2x 12,5	60 x 140		•	12,5	140 (Ständerwerk) + 30 (Federschiene)	62	-5	-12	60
							and mit K		INS	ULA	ΓΙΟN	Tektalan	und Armierpu	tz							
-	i i Stu	iiutio	II JUL	CIIC	•	rede	60				•	12,5	60 x 200		•	12,5	200 (Ständerwerk) + 30 (Federschiene)	58	-5	-12	56
F30					•	•	60 + 12,5				•	12,5	60 x 200		•	12,5	200 (Ständerwerk) + 30 (Federschiene)	62	-6	-12	60
							and mit K ontalen						und Armierpu	ıtz							
-				•			35				•	12,5	60 x 160	•		12,5	160 (Ständerwerk) + 60 (Holzriegel)	52	-3	-10	50

Die angegebenen Schalldämm-Maße gelten in Verbindung mit einer Mineralwolle-Dämmschicht nach EN 13162:

- Zwischen den Ständern: Längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 5 kPa·s/m².
- Im Bereich der Installationsebene: L\u00e4ngenbezogener Str\u00f6mungswiderstand nach DIN EN 29053; r ≥ 11 kPa·s/m².

Schallschutz-Nachweise
L 007-10.07
16_002604_DD01_(DR_V)06_E02_04

16-002604-PR01 (PB V06-F02-04-de-01) 16-002604-PR01 (PB V08-F02-04-de-01) 13-002511-PR01 (PB V6-F02-04-de-01)

Hinweise

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

W552.de Holztafelbau-Außenwand mit entkoppelter Beplankung

Systemvarianten

	-	ankung			\ A /=	14- 0			Holzständer	Schallschutz						
Feuerwiderstandsklasse	WARM-WAND Natur D	Feuerschutzplatte Knauf Piano (I) Diamant / Diamant X Diamant / Diamant X Diamant / Diamant X		nauf Piano atte		Diamant / Diamant X	Mind Dicke	Mind Querschnitt b x h	Dämmschicht Mind Dicke	Schalldär Einseitig d Dämmsch R _w	entkoppelte Beplanku nicht Spektrum- Anpassungswert		ng inkl. $\mathbf{R}_{\mathbf{w},\mathbf{R}}$			
₩ S													uБ			
F30			•	15		3	•	15	60 x 90	80 (Ständerwerk) + 30 (Federschiene)	61,1	-3,7	-10,7	59		
F60			•	12,5			•	12,5	60 x 100	80 (Ständerwerk) + 30 (Federschiene)	55	-4	-9	53		
F60			•	2x 12,5			•	2x 12,5	60 x 100	80 (Ständerwerk) + 30 (Federschiene)	62	-3	-9	60		
F90			● 1)	2x 18			● 1)	2x 18	60 x 90	80 (Ständerwerk) + 30 (Federschiene)	69,7	-3,1	-7,9	67		
W552	2.de Ho	lztafell	oau-Aı	ußenwand –	- Mit ei	nseitig	entkoj	ppelter Bep	lankung auf ho	rizontalen Holzriegel 60	0 x 60 mm					
F60			•	2x 12,5			•	2x 12,5	60 x 100	80 (Ständerwerk) + 60 (Holzriegel)	50	-1,9	-5,6	48		

Angaben der Tabelle gelten ohne Wetterschutz, ein Wetterschutzsystem ist zwingend erforderlich und kann individuell nach Anforderungen gewählt werden. Messungen für die Schallschutzwerte mit einseitig entkoppelte Beplankung bei Ausführung mit Federschiene. Eine vorgehängte Fassade sowie ein Blendmauerwerk haben keinen negativen Einfluss auf die Schalldämmung.

$\textbf{W552.de Holztafelbau-Außenwand mit Knauf WARM-WAND Natur D} \ \ \textbf{Diffutherm} \ \ (\textbf{WDVS}) - \textbf{Mit einseitig entkoppelter Beplankung auf Federschiene} \ \ \textbf{WDVS} - \textbf{Mit einseitig entkoppelter Beplankung auf Federschiene} \ \ \textbf{WDVS} - \textbf{WOVS} - \textbf{WO$

F30	•	•	100 + 12,5	•	12,5	60 x 140	140 (Ständerwerk)	66	-	-	62
	•	•	100 + 12,5	•	2x 12,5	60 X 140	+ 30 (Federschiene)	70	-	-	66
F60	•	•	100 + 12,5	•	12,5	60 x 140	140 (Ständerwerk) + 30 (Federschiene)	66	-	-	62

¹⁾ Nur Diamant X mit Plattenbreite 1250 mm möglich, Mindestabnahmemengen anfragen.

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Die angegebenen Schalldämm-Maße gelten in Verbindung mit einer Mineralwolle-Dämmschicht nach EN 13162:

- Zwischen den Ständern: Längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 5 kPa·s/m².
- Im Bereich der Installationsebene: L\u00e4ngenbezogener Str\u00f6mungswiderstand nach DIN EN 29053; r ≥ 11 kPa·s/m².

Schallschutz-Nachweise L005-10.07 / L007-10.07 / L011-10.07 / L045-04.16

Hinweise auf Seite 4 beachten.

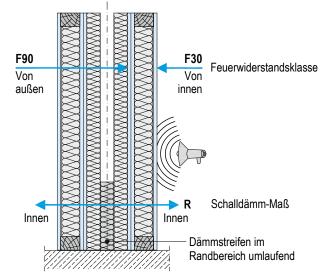
Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

⁽I) Gipskern spezialimprägniert

W55.de Knauf Holztafelbau-Wände

W553.de Holztafelbau-Gebäudeabschlusswand

Systemvarianten

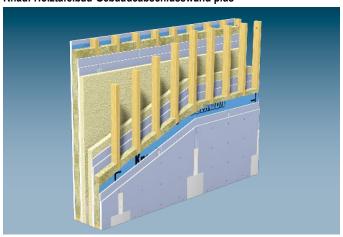

		Beplankung Wandseite 1 Trennfuge F90 Wandseite 2 innen F30								Holz- ständer	Schallschutz							
	0			Diamant / Diamant X	Mindest- Dicke	Feuerschutzplatte Knauf Piano	iuse	nte z	illien i 50		Dämm- schicht Ständerwerk	Trennfuge Zwischen den Aufbauten		Schalldämm-Maß Doppelter Aufbau				
	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano (I)	Knauf Feuerschutzplatte (I)				Diamant / Diamant X	oard	Mindest- Dicke		Mindest- Dicke	Luftschicht	Dämm- schicht	R _w	Spektrum- Anpassungswert		R _{w,R}	
	Feuerw	Feuers	Knauf	Diamar	d mm	Feuers	Diamar	Silentboard	d mm	mm	mm	mm	mm	dB	C dB	C _{tr}	dB	
W	W553.de Holztafelbau-Gebäudeabschlusswand plus													Stände	rachsabst	and ≤ 312	2,5 mm	
F90 von außen	F30 von innen			•	2x 15		•		15	50 x 85	80	50	Je Seite 2x 30 ³⁾	67	-3	-7	65	
F90 vor	F30 vol			•	2x 15		•		2x 15		00			71	-2	-7	69	
W	53.de	e Holz	tafelb	au-Ge	bäudeabsch	ıluss	wan	d		Ständerachsabstand ≤ 625 n								
			•		2x 15	•			12,5		160	60	_	64	-	-	62	
				•	2x 15		•		12,5		100			64	-	-	62	
			•1)		2x 18			•	12,5					66	-2	-6	64	
lßen	neu		•1)		2x 18			•	2x 12,5				_	69	-2	-6	67	
F90 von außen	F30 von innen		● 1)		2x 18		•	•	12,5 + 12,5 ²⁾	60 x 160	100	50		73	-2	-8	71	
			• ¹⁾		2x 18		•	•	12,5 + 12,5 ²⁾				Je Seite	77	-2	-7	75	
			● 1)		2x 18		•		12,5					73	-4	-11	71	

- 1) Feuerschutzplatte GKFI 18 nur auf Anfrage lieferbar, Mindestabnahmemengen anfragen
- 2) Silentboard mit Spreizklammern in darunterliegender Diamant geklammert
- 3) Trittschalldämmplatte (nichtbrennbar) (z. B. Knauf Insulation Trittschalldämmplatte TP), Luftschicht mittig
- (I) Gipskern spezialimprägniert

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Bei einlagiger Beplankung horizontale Plattenstöße mit Holzriegel/Metallprofil hinterlegen.

Die Angaben der Feuerwiderstandsklasse beziehen sich auf den einfachen Wandaufbau. Schalldämm-Maß R bezieht sich auf den doppelten Wandaufbau.


Schallschutz-Nachweise L010-10.07 / L042-01.15

	Hinweise auf Seite 4 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

KNAUF

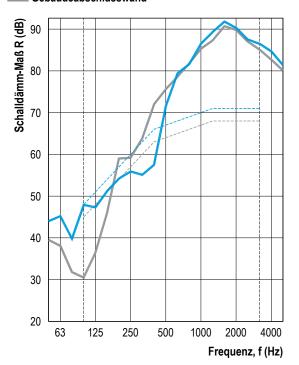
Knauf Holztafelbau-Gebäudeabschlusswand plus

Durch den verringerten Ständerachsabstand der Gebäudeabschlusswand plus werden entscheidende Eigenschwingungen im unteren Frequenzbereich unterdrückt. Dadurch erhöht sich die Schalldämmung im tieffrequenten Bereich deutlich, erkennbar an den Spektrum-Anpassungswerten.

Beispiel

Nachfolgend ein Beispiel einer Knauf Gebäudeabschlusswand plus im Vergleich mit einer herkömmlichen Gebäudeabschlusswand.

Gebäudeabschlusswand plus W553.de

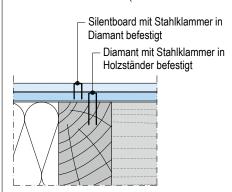

 $R_w (C, C_{tr})$ = 67 (-2, -6) dB $R_w + C$ = 65 dB $R_w + C_{tr}$ = 60 dB

Gebäudeabschlusswand W553.de

 $R_w (C, C_{tr})$ = 64 (-7, -15) dB $R_w + C$ = 56 dB $R_w + C_{tr}$ = 49 dB

- Gebäudeabschlusswand plus

__ Gebäudeabschlusswand



In Abhängigkeit der Grundkonstruktion haben die Faktoren Trennfugentiefe, Dämmstoff in der Trennfuge, Plattentyp und Befestigungsart der obersten
Beplankungslage einen wesentlichen Einfluss auf das Schalldämm-Maß.
Eine deutliche Erhöhung des Schalldämm-Maßes ist durch eine "entkoppelte" Befestigung der obersten Plattenlage durch Klammern nur in die untere
Beplankungslage (Diamant) möglich. Durch diese Befestigungsvariante kann
das Schalldämm-Maß um ca. 4 dB erhöht werden.

Der Einfluss einer Verbreiterung der Trennfuge von 50 mm auf 110 mm und Vorsehen von 2x 30 mm Dämmstoff liegt ebenfalls bei ca. 4 dB.

Entkoppelte Befestigung

Verbesserung der Schalldämmung durch Entkoppelung. Die Entkoppelung kommt durch die Klammerung der Silentboard nur in die Diamant und nicht in den Holzständer zustande (siehe horizontale Darstellung).

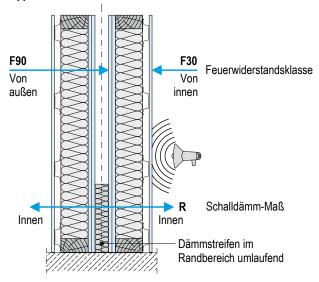
W55.de Knauf Holztafelbau-Wände

W554.de Holztafelbau-Gebäudeabschlusswand mit entkoppelter Bepl.

Systemvarianten

										Holzstän- der	- Schallschutz							
Feuerwiderstandsklasse		Knauf Piano (I)	Knauf Feuerschutzplatte (I)	Diamant / Diamant X		ıf Piano					Dämmschicht Ständerwerk	Trennfuge Zwischen de Aufbauten	Zwischen den		Schalldämm-Maß Doppelter Aufbau			
		Feuerschutzplatte Knau			Mindest- Dicke	Feuerschutzplatte Knauf Piano	Feuerschutzplatte Knau Diamant / Diamant X Silentboard	Silentboard	Mindest- Dicke	Mindest- Querschnitt b x h	Mindest- Dicke	Luftschicht	Dämm- schicht	R _w		ungswert	R _{w,R}	
	Feuel	Feuel	Knau	Diam	d mm	Feuel	Diam	Silent	d mm	mm	mm	mm	mm	dB	C dB	C _{tr} dB	dB	
W5	54.de	Holzt	afelba	ıu-Ge	bäudeabsch	lussv	vand	mit e	inseitig entl	koppelter Beplankung auf Federschiene				Ständerachsabstand ≤ 625 mm				
F90 von außen	F30 von innen		•		2x 15	•			12,5	60 x 160	100	60		72	_	-	70	
F90 von	F30 vo			•	2x 15		•		12,5			00		72	-	-	70	

(I) Gipskern spezialimprägniert


Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

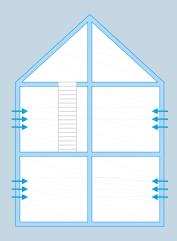
Die angegebenen Schalldämm-Maße gelten in Verbindung mit einer Mineralwolle-Dämmschicht nach EN 13162:

- Zwischen den Ständern: Längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 5 kPa·s/m².
- Im Bereich der entkoppelten Beplankung: 30 mm; längenbezogener Strömungswiderstand nach DIN EN 29053; r ≥ 11 kPa·s/m².

Bei einlagiger Beplankung horizontale Plattenstöße mit Holzriegel/Metallprofil hinterlegen

Die Angaben der Feuerwiderstandsklasse beziehen sich auf den einfachen Wandaufbau. Schalldämm-Maß R bezieht sich auf den doppelten Wandaufbau.

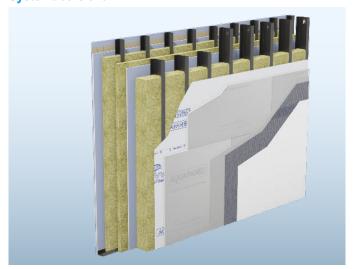
Hinweise


Hinweise auf Seite 4 beachten.

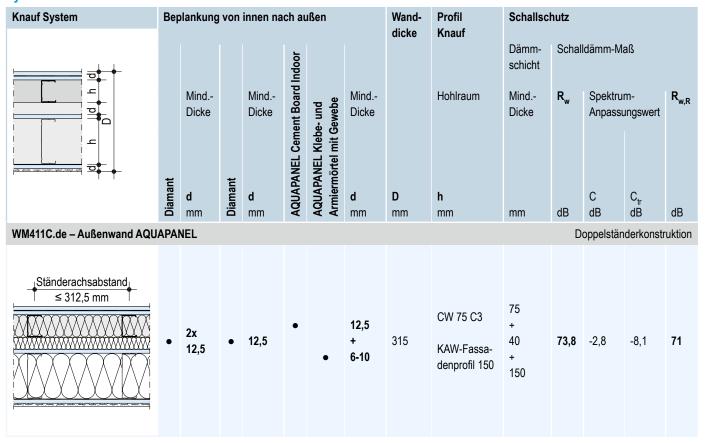
Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Holztafelbau-Wände W55.de.

Außenwand-System mit Zementplatten

Die Knauf Außenwand ist die logische Weiterführung der bewährten Trockenbausysteme aus dem Innenbereich, die mit hohen Leistungen z. B. im Bereich des Schallschutzes und der Geschwindigkeit der Erstellung glänzt. Das System der Trockenbau-Innenwand wird an das Gebäudeäußere platziert. Die äußere Beplankung wird aus AQUAPANEL Cement Board Outdoor realisiert. Ebenfalls werden einzelne Systemkomponenten wie beispielsweise die Ständerprofile den Anforderungen an eine Außenwand angepasst.


Außenwand mit AQUAPANEL

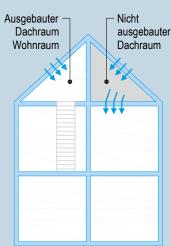
WM411C.de - Doppelständerkonstruktion


Systemübersicht

- Doppelständerkonstruktion mit CW-Profilen C3 / KAW Fassadenprofil 150
- Mischbeplankt
- Außenseitiger Wetterschutz
- Mit Dämmstoffeinlage
- Bewertetes Luftschalldämm-Maß R_w: 73,8 dB
- Wärmedurchgangskoeffizient 0,185 W/(m²K)
- Alle Baustoffe sind aus der Baustoffklasse A, nichtbrennbar, gem. DIN EN 13501-1
- Wandhöhe innere Ständerebene bis 4,95 m

WM411C.de

Systemvariante


Dächer

Dachgeschossbekleidungen mit Gipsplatten

Nach DIN 4109 gelten für Decken von Aufenthaltsräumen, die zugleich den oberen Gebäudeabschluss bilden, sowie für Dächer und Dachschrägen von ausgebauten Dachräumen die Anforderungen an die Luftschalldämmung nach Broschüre Anforderungen an die Bauteile SSO2.de

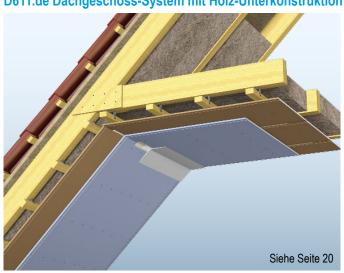
Kapitel "Ermittlung der Anforderungen an Außenbauteile".

Für Dächer über nicht ausgebauten Dachräumen sowie bei Kriechböden sind die Anforderungen an die Bauteile aus der Kombination Dach und Decke gemeinsam zu erfüllen. Die Anforderungen gelten als erfüllt, wenn das Schalldämm-Maß der Decke alleine um nicht mehr als 10 dB unter der gestellten Anforderung liegt.

D61.de Knauf Dachgeschoss-Systeme

Systemübersicht

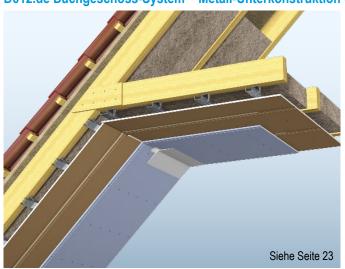
KNAUF


D610.de Dachgeschoss-System ohne Unterkonstruktion

D610.de, 25 mm Massivbauplatte

- Direktbekleidung
- Einlagige Gipsplattenbeplankung
- Bauschalldämm-Maß R_w: 50,5 dB

D611.de Dachgeschoss-System mit Holz-Unterkonstruktion

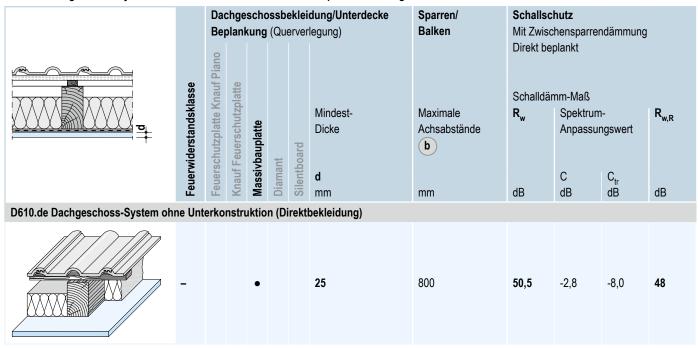


■ Unterkostruktion: Traglatte direkt befestigt oder

- Traglatte mit Direktschwingabhänger
- Einlagige/Zweilagige Gipsplattenbeplankung
- Bauschalldämm-Maß R_w: 48 bis 58,6 dB
- Feuerwiderstand bis F60

Z. B. D611.de, 12,5 mm Silentboard + 12,5 mm Diamant

D612.de Dachgeschoss-System – Metall-Unterkonstruktion CD-Profil 60/27


Z. B. D612.de, 12,5 mm Silentboard + 12,5 mm Diamant

- Metall-Unterkostruktion CD-Profil 60/27
- Einlagige/Zweilagige Gipsplattenbeplankung
- Mit und ohne Dämmstoffauflage
- Bauschalldämm-Maß R_w: 51 bis 64,4 dB
- Feuerwiderstand bis F90

D610.de Ohne Unterkonstruktion

Systemvariante

D610.de Dachgeschoss-System ohne Unterkonstruktion – Ohne Aufsparrendämmung

Schallschutz: Prüfaufbauten siehe Seite 26

Zusätzliche Aufsparrendämmung zulässig

Schallschutz-Nachweis L054-09.18 Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

D61.de Knauf Dachgeschoss-Systeme

D611.de Holz-Unterkonstruktion

Systemvarianten

D611.de Dachgeschoss-System – Holz-Unterkonstruktion – Ohne Aufsparrendämmung

		/ Uı	nterd	lecke	Э		dung legung)	Traglatte	Mit Z		oarrendäm arrendämn	•				
Knauf System - G	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Mindest- Dicke d mm	Maximale Achsab- stände b		ldämm-M t befestigt Spektru Anpassi C dB	t	$R_{w,R}$	Direk R _w	Spektru	abhänger m- ungswert C _{tr} dB	$R_{w,R}$
D611.de Dachgeschoss-System –	Holz-	Unte	rkon	strul	ktion											
		•					12,5	500	48,8	-4,0	-11,2	46	-	-	-	-
					•		12,5	500	-	-	-	-	50,0	-3,1	-9,7	48
				•			20	800	-	-	-	-	50	-	-	48
	-			•			25	800	-	-	-	-	50	-	-	48
					•		2x 12,5	500	-	-	_	-	57,2	-3,5	-10,3	55
Z. B. Traglatte direkt befestigt					•	•	12,5 + 12,5	400	-	-	-	-	58,6	-3,3	-10,0	56
		•					12,5	400	48,8	-4,0	-11,2	46	-	-	-	-
					•		12,5	400	-	-	-	-	50,0	-	-	48
			•				15	400	48	-	-	46	-	-	-	-
	F30			•			20	400	-	-	-	-	50	-	-	48
					•		2x 12,5	400	-	-	-	-	57,2	-3,5	-10,3	55
Z. B. Traglatte abgehängt					•	•	12,5 + 12,5	400	-	-	-	-	58,6	-3,3	-10,0	56
	F60			•			25	400	-	-	-	-	50	-	-	48

Schallschutz: Prüfaufbauten siehe Seite 26

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Bei Mischbeplankungen stets Diamant als Decklage.

Hinweise

Hinweise auf Seite 4 beachten.

Systemvarianten

D611.de Dachgeschoss-System – Holz-Unterkonstruktion – Mit Aufsparrendämmung

		/ Un	hges iterde lank	ecke			ung gung)	Traglatte Schallschutz Mit Zwischensparrendämmung Ohne Untersparrendämmung						
Knauf System – D611.de Dachgeschoss-System –	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Mindest- Dicke d mm	Maximale Achsabstände b mm	Schalldämm Direkt befest R _w		wert C _{tr} dB	$R_{w,R}$		
Dorr.de Dacingeschoss-System –	-	•	KOIIS	ırukı	ion		12,5	500	52,6	-4,1	-11,1	50		
	F30	•					12,5	400	52,6	-4,1	-11,1	50		
Z. B. Aufsparrendämmung			•				15	400	52	-	-	50		

Schallschutz: Prüfaufbauten siehe Seite 26

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

D61.de Knauf Dachgeschoss-Systeme

D612.de Metall-Unterkonstruktion CD-Profil

Systemvarianten

D612.de Dachgeschoss-System – Metall-Unterkonstruktion CD-Profil 60/27 – Ohne Aufsparrendämmung

D612.de Dacngeschoss-System – N						kleic		Tragprofil		llschutz						
			nterd								sparrendä	_				
		_	olank	ung	(Que	erverl	egung)		Abhäi	ngung m	nit Direktso	chwinga	abhänge	er		
Knauf System P	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Mindest- Dicke d mm	Maximale Achsab- stände b	Ohne	sparren Spektr	dämmung	$R_{w,R}$	Mit Unter R _w	sparrenc Spektri Anpass wert C dB		$R_{w,R}$
D612.de Dachgeschoss-System –	Metal	I-Unt	erko	nstr	uktio	n CD	-Profil 60/2	7								
		•					12,5	500	51,4	-4,0	-11,0	49	53,4	-4,2	-11,3	51
					•		12,5	500	52,4	-3,5	-10,4	50	54,0	-3,7	-10,6	52
						•	12,5	400	_	_	_	_	57,4	-3,8	-10,7	55
				•			20	800	52	_	_	50	54	_	_	52
				•			25	800	55,5	-3,4	-10,1	53	58,5	-4,4	-11,5	56
	-	•					2x 12,5	500	56,6	-3,7	-10,5	54	58,5	-4,2	-11,2	56
					•		2x 12,5	500	57,7	-3,3	-9,9	55	60,0	-3,9	-10,8	58
					•	•	12,5 + 12,5	400	58,8	-3,1	-9,7	56	61,4	-3,6	-10,1	59
						•	2x 12,5	400	-	_	-	-	62,0	-3,4	-9,9	60
		•					12,5	400	51,4	-	_	49	53,4	-4,2	-11,3	51
					•		12,5	400	52,4	-3,5	-10,4	50	54,0	-3,7	-10,6	52
						•	12,5	400	-	-	-	-	57,4	-3,8	-10,7	55
Z. B. Tragprofil abgehängt			•				15	500	51	-	-	49	53	-	-	51
Z. D. Hagproni abgenangt	500			•			20	625	52	_	_	50	54	_	_	52
	F30	•					2x 12,5	400	56,6	-3,7	-10,5	54	58,5	-4,2	-11,2	56
					•		2x 12,5	400	57,7	-3,3	-9,9	55	60,0	-3,9	-10,8	58
					•	•	12,5 + 12,5	400	58,8	-3,1	-9,7	56	61,4	-3,6	-10,1	59
						•	2x 12,5	400	-	-	-	-	62,0	-3,4	-9,9	60
	F60			•			25	400	55,5	-3,4	-10,1	53	58,5	-4,4	-11,5	56
	F90			•			25	400	55,5	-3,4	-10,1	53	58,5	-4,4	-11,5	56

Schallschutz: Prüfaufbauten siehe Seite 26

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen. Bei Mischbeplankungen stets Diamant als Decklage.

Schallschutz-Nachweis L054-09.18 Hinweise

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

D612.de Metall-Unterkonstruktion CD-Profil

Systemvarianten

D612.de Dachgeschoss-System - Metall-Unterkonstruktion CD-Profil 60/27 - Mit Aufsparrendämmung

		/ Ur	hges nterde olank	ecke			ing gung)	Tragprofil		parrendämmun it Direktschwing		
Knauf System To	Feuerwiderstandsklasse	Feuerschutzplatte Knauf Piano	Knauf Feuerschutzplatte	Massivbauplatte	Diamant	Silentboard	Mindest- Dicke d mm	Maximale Achsab- stände b	Schalldämm-N Ohne Untersp R _w	Aaß arrendämmung Spektrum-Anp C dB	cassungswert $C_{\rm tr}$ dB	$R_{w,R}$
D612.de Dachgeschoss-System –	Metal	I-Unt	erkor	nstrul	ktion	CD-	Profil 60/27					
		•					12,5	500	56,9	-4,6	-12,0	54
					•		12,5	500	58,6	-4,5	-11,8	56
				•			20	800	58	-	-	56
	-				•		2x 12,5	500	63,1	-4,0	-10,7	61
					•	•	12,5 + 12,5	400	64,4	-3,8	-10,6	62
		•					12,5	400	56,9	-4,6	-12,0	54
					•		12,5	400	58,6	-4,5	-11,8	56
						•	12,5	400	61,7	-4,2	-11,1	59
 			•				15	500	56	_	_	54
Z. B. Tragprofil abgehängt	F30			•			20	625	58	_	_	56
					•		2x 12,5	400	63,1	-4,0	-10,7	61
					•	•	12,5 + 12,5	400	64,4	-3,8	-10,6	62

Schallschutz: Prüfaufbauten siehe Seite 26

Kursive Schalldämm-Maße sind abgeleitete Werte aus Messungen von abweichenden Konstruktionen.

Bei Mischbeplankungen stets Diamant als Decklage.

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

D61.de Knauf Dachgeschoss-Systeme

Schallschutzaufrüstung

Schallschutzaufrüstung

Aufrüstung mit D612.de Knauf Dachgeschoss-System – Ohne Aufsparrendämmung

Admustaling mit Dorz.ue Kliadi Dacii	J		olank		Tragprofil	_	hutz		Schallschutz ¹⁾					
		(Qu	erver	legung)		Dämmsch	nicht		Mit Zwis	chensparr	endämmur	ıg		
	Se									hwingabhä				
Bestand Aufrüstung - Knauf System	Feuerwiderstandsklasse	Diamant	Silentboard	Mindest- Dicke d	Maximale Achsab- stände	Mindest- Dicke	Mineral- wolle	Aufsparren- dämmung SDP	R _w	С	m- ungswert C _{tr}	R _{w,R}		
A 6 " 4 " 10040 L 16 GD				mm	mm	mm	mm	mm	dB	dB	dB	dB		
Aufrüstung mit D612.de Knauf Dac	ngesc	noss	-Sysi	em (Metall-	-Unterkonstru	iktion CD-P	rotil 60/27)							
		•		12,5	500				56,1	-7,2	-14,9	54		
Bestand	-	•		2x 12,5	500	160	•	-	61,2	-7,1	-14,9	59		
Aufrüstung (D612.de)		•	•	12,5 + 12,5	400				62,7	-7,1	-15,0	60		

¹⁾ Prüfaufbauten siehe Seite 26

Hinweise

Vorhandene Bestandskonstruktion auf Tragfähigkeit prüfen.

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

^{2) 30} mm Untersparrendämmung, längenbezogener Strömungswiderstand 11 kPa·s/m²

Schallschutzaufrüstung

Aufrüstung mit D612.de Knauf Dachgeschoss-System – Mit Aufsparrendämmung

			olank erver	ung legung)	Tragprofil	Schallsch Dämmsch			Schallso Mit Zwise	chutz ¹⁾ chensparre	endämmun	9
									Abhängu Direktsch	ıng mit nwingabhä	nger	
Bestand Aufrüstung - Knauf System	Feuerwiderstandsklasse	ant	Silentboard	Mindest- Dicke	Maximale Achsab- stände	Mindest- Dicke	Mineral- wolle	Aufsparren- dämmung SDP	Mit Unte	rsparrendä Spektrun Anpassu	n- ngswert	$R_{w,R}$
	Feue	Diamant	Silen	d mm	mm	mm	mm	mm	dB	C dB	C _{tr} dB	dB
Aufrüstung mit D612.de Knauf Dac	hgesc	hoss	-Syst	em – Mit A	ufsparrendä	mmung (M	letall-Unterl	konstruktion CI	D-Profil 60	/27)		
	_	•		12,5	500	160 +	•		59,4	-7,0	-14,9	57
Bestand Aufrüstung (D612.de)		•	•	12,5 + 12,5	400	80		•	65,5	-6,1	-14,0	63

¹⁾ Prüfaufbauten siehe Seite 26

Hinweise

Vorhandene Bestandskonstruktion auf Tragfähigkeit prüfen.

Hinweise auf Seite 4 beachten.

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

^{2) 30} mm Untersparrendämmung, längenbezogener Strömungswiderstand 11 kPa $^\circ$ s/m²

D61.de Knauf Dachgeschoss-Systeme

Prüfaufbauten – Luftschalldämmung

Prüfaufbauten – Luftschalldämmung

Prüfaufbau Ohne Aufsparrendämmung

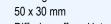
Schrägdach:

- Betondachsteine
- Lattung 50 x 30 mm und Konterlattung
- Diffusionsoffene Unterdeckbahn
- Kehlbalken/Sparren (KVH) 80 x 180 mm, Achsabstand 770 mm
- Mineralwolle-Dämmschicht 160 mm, zwischen Balken geklemmt
- Dachneigung 80°

Schrägdach:

oder

- Betondachsteine
- Lattung 50 x 30 mm und Konterlattung 60 x 40 mm
- Diffusionsoffene Unterdeckbahn
- Aufsparrendämmung 80 mm Schrägdach-Dämmplatte SDP-035-GF
- Kehlbalken/Sparren (KVH) 80 x 180 mm, Achsabstand 770 mm
- Mineralwolle-Dämmschicht 160 mm, zwischen Balken geklemmt
- Diffusionshemmende Dampfbremse
- Dachneigung 80°

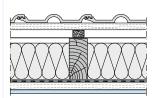

Prüfaufbau Dachgeschoss-Bekleidung

Abgehängt

- Direktschwingabhänger Abhängehöhe (h) ca. 55 mm
- Profil CD 60/27
- Ohne/mit Untersparrendämmung
- Knauf Platten

Hinweise auf Seite 4 beachten. Hinweise Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

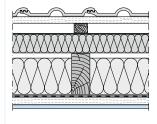
- Diffusionshemmende Dampfbremse



Prüfaufbauten – Schallschutzaufrüstung

Prüfaufbauten – Schallschutzaufrüstung

Prüfaufbau Bestand Ohne Aufsparrendämmung


Schrägdach:

- Betondachsteine
- Lattung 50 x 30 mm und Konterlattung 50 x 30 mm
- Diffusionsoffene Unterdeckbahn
- Kehlbalken/Sparren (KVH) 80 x 180 mm, Achsabstand 770 mm
- Mineralwolle-Dämmschicht 160 mm, zwischen Balken geklemmt
- Diffusionshemmende Dampfbremse
- Dachneigung 80°

Mit bestehender Unterdecke

- Holzlatte 50 x 30 mm direkt befestigt
- Platte GKF 12,5 mm

Prüfaufbau Bestand Mit Aufsparrendämmung

Schrägdach:

oder

- Betondachsteine
- Lattung 50 x 30 mm und Konterlattung 60 x 40 mm
- Diffusionsoffene Unterdeckbahn
- Aufsparrendämmung 80 mm Schrägdach-Dämmplatte SDP-035-GF
- Kehlbalken/Sparren (KVH) 80 x 180 mm, Achsabstand 770 mm
- Mineralwolle-Dämmschicht 160 mm, zwischen Balken geklemmt
- Diffusionshemmende Dampfbremse
- Dachneigung 80°

Mit bestehender Unterdecke

- Holzlatte 50 x 30 mm direkt befestigt
- Platte GKF 12,5 mm

Prüfaufbau Dachgeschoss-Bekleidung als Aufrüstung

- Direktschwingabhänger
 - Profil CD 60/27

Abgehängt

- Mit Untersparrendämmung 30 mm, Strömungswiderstand ≥ 11 kPa·s/m²
- Knauf Platten

Abhängehöhe (h) ca. 40 mm

Hinweise auf Seite 4 beachten. Hinweise

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Dachgeschoss-Systeme D61.de.

27

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 lphofen **Knauf AMF**Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke Knauf PFT

Maschinentechnik und Anlagenbau

Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

SS06.de/ger/01.19/0/OD

Trockenbau-Systeme

SS07.de
Knauf Bauphysik

01/2019

Schallschutz mit Knauf

Raum-in-Raum Systeme

Inhalt

Nutzungshinweise
Hinweise3
Hinweise zum Dokument
Bestimmungsgemäßer Gebrauch von Knauf Systemen3
Hinweise zum Schallschutz3
Brandschutz3
Knauf Cubo
Einleitung5
Systemübersicht7
K37.de Knauf Cubo
K375.de Cubo Basis8
Systemvarianten8
K376.de Cubo Empore9
Systemvarianten9
K37P.de Knauf Cubo Plus
K376P.de Cubo Plus Empore
Systemvarianten

Nutzungshinweise

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt.

Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Verweise auf weitere Dokumente

Weitere Broschüren des Knauf Schallschutzordners:

Bauakustik

- Grundlagen SS01.de
- Anforderungen an die Bauteile SS02.de
- Ermittlung der Schalldämmung im eingebauten Zustand SS03.de
- Innenwände SS04.de
- Decken SS05.de
- Außenbauteile SS06.de

Raumakustik

- Grundlagen und Konzepte AK01.de
- Daten für die Planung AK02.de

Detailblatt

■ Knauf Cubo K37.de

Technische Information

■ Knauf Cubo Plus Tro144.de

Broschüren

- Knauf Diamant-Systeme DIA01.de
- Knauf Silentboard-Systeme SIB01.de
- Knauf Fireboard-Systeme FIB01.de

Ordner

■ Brandschutz mit Knauf BS1.de

Begriffsdefinition

■ HWP = Holzwerkstoffplatte

Bestimmungsgemäßer Gebrauch von Knauf Systemen

Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. freigegeben sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

Hinweise zum Schallschutz

= Bewertete Standard-Schallpegeldifferenz in dB bezogen auf eine $D_{nT,w}$ Bezugsnachhallzeit von $T_0 = 0.5 s$

= Bewerteter Norm-Trittschallpegel in dB

 $L_{n,w}$ = Spektrum-Anpassungswerte für den Luftschall

bzw. Werte in dB, die zu Einzahlangaben addiert werden können, um Merkmale bestimmter Schallspektren zu berücksichtigen. C_{tr}

 C_{l} = Spektrum-Anpassungswerte für den Trittschall Werte in dB, die zu Einzahlangaben addiert werden können, um bzw. Merkmale bestimmter Schallspektren zu berücksichtigen. C_{1,50-2500}

Index R = Dient zur Unterscheidung der Rechenwerte von den Prüfstands-

Dämmschicht (G) (Mineralwolle-Dämmschicht nach EN 13162, nichtbrennbar), längenbezogener Strömungswiderstand nach

DIN EN 29053; r ≥ 5 kPa·s/m²; z. B. Knauf Insulation Trennwand-Dämmplatte TI 140 T

> Die Nachweisführung der neuen DIN 4109:2018-01 erfolgt nicht mit den Rechenwerten $R_{w,R}$ bzw. $L_{n,w,R}$, sondern mit den Prüfstandwerten $R_w/L_{n,w}$ auf eine Nachkommastelle genau. Erst am Ende der Prognose unter Berücksichtigung aller an der Übertragung beteiligten Begrenzungsflächen (Flanken) wird in Abhängigkeit der Art des trennenden Bauteils eine Prognoseunsicherheit mit einbezogen.

> Übergangsweise werden in den Knauf Detailblättern sowohl die Prüfstandswerte als auch die bisher ausgewiesenen Rechenwerte angegeben.

> Werden anstelle der bewerteten Prüfstandswerte Werte angegeben, die auf rechnerischen Prognosen basieren bzw. von gemessenen Prüfstandswerten abgeleitet wurden, erfolgt die Angabe ohne Nachkommastelle.

Brandschutz

Hinweise

Für den Brandschutz sind ggf. zusätzliche Maßnahmen (z. B. zusätzliche Anforderungen an die Dämmschicht) erforderlich. Entsprechende Angaben im Brandschutzordner/Detailblatt des jeweiligen Systems sind zu berücksichtigen.

Informationen zu den Verwendbarkeitsnachweisen finden Sie in den Knauf Detailblättern der entsprechenden Systeme.

Raum-in-Raum Systeme Luft- und Trittschallschutz

Cubo eröffnet weitreichende konstruktive Freiheit bei Raum-in-Raum-Konzepten, als selbsttragendes und freistehendes Raumsystem in modularer Rauweise

Schnell und problemlos im Aufbau, hoch wirtschaftlich und höchst flexibel in Funktion und Gestaltung.

Das Cubo System kombiniert einen hohen Schallschutz mit den Vorteilen eines vollständig geschlossenen und freistehenden Raumes.

Knauf Cubo

Akustische Eigenschaften

Da ein Cubo ein vollständiger Raum und nicht nur ein Bauteil ist, ist die Schalldämmung abhängig von den Abmessungen und wird als Standardschallpegeldifferenz D_{nT} angegeben. D_{nT} ist die Schallpegeldifferenz zwischen außen und innen bei üblichen raumakustischen Verhältnissen (Nachhallzeit T = 0,5 s).

Bei den Luftschall-Prüfungen wurden Decke und alle Wände rundum beschallt. Den Berechnungen liegt dieselbe Annahme zugrunde. Die Angaben gelten für einen Cubo mit den Innenabmessungen 3,90 x 2,10 x 2,60 m (L x B x H). Bei ungünstigen Verhältnissen von Volumen zu Oberfläche, z. B. bei kleineren Abmessungen, verringert sich das $D_{nT,w}$ bis zu 2 dB, umgekehrt kann sich das $D_{nT,w}$ um 3 dB verbessern, z. B. bei größeren Abmessungen.

Für einen Cubo dieser Abmessungen und eine Tür mit einer Fläche von 2 m² gilt die Faustregel:

Ist das bewertete Schalldämm-Maß R_w der Tür 1 dB größer als die bewertete Standardschallpegeldifferenz $D_{nT,w}$ des Cubo ohne Tür, so verringert sich das $D_{nT,w}$ durch die Tür um maximal 1 dB. Zur genaueren Beurteilung sind die frequenzabhängigen Schalldämmungen von Cubo und Tür zu berücksichtigen.

Die Angaben zum Luftschall berücksichtigen nur den Schalldurchgang durch Wand und Decke des Cubo. Um den gewünschten Schallschutz zu erreichen muss ggf. die Flankenübertragung des vorhandenen Bodens verbessert werden (z. B. nachträgliche Trennfuge im Estrich).

Die steiferen UA-Profile sowie Cocoon Transformer Profile sind bezüglich Schallschutz ungünstiger als CW-Profile, übertreffen diese aber in Kombination mit Entkopplungsmaßnahmen wie Federschiene oder Direktschwingabhänger.

Im Wesentlichen wird zwischen zwei Systemen unterschieden.

Cubo Basis

Selbsttragendes Raum-in-Raum System ohne zusätzliche Auflasten z. B. zum Einsatz als:

- Sanitärzellen
- Schallschutzkabinen
- Besprechungsräumen
- Werk- und Produktionsbüros
- Musikproberäumen / Studiobau

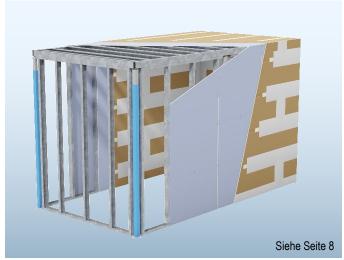
Cubo Empore

Selbst tragendes Raum-in-Raum System mit der Möglichkeit zur Aufnahme zusätzlicher Auflasten bis 2 kN/m² als Verkehrslasten. Neben den Anwendungen analog zum Cubo Basis z. B. zum Einsatz als:

- Wohnraumerweiterung
- Zusätzliche Lager- und Stellflächen

Cubo Plus Empore

Selbsttragendes Raum-in-Raum System mit der Möglichkeit zur Aufnahme zusätzlicher Auflasten. Von ruhenden Auflasten über bedingte Begehbarkeit zu Wartungszwecken bis hin zur Nutzung als Wohnraum im häuslichen Bereich kann diese Nutzung dimensioniert werden. Neben den Anwendungen analog zum Cubo Empore für Lösungen mit erhöhte Spannweiten durch Verwendung von Cocoon Transformer Profilen.



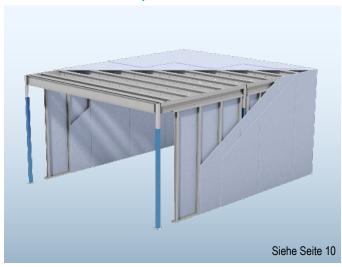
Raum-in-Raum Systeme

Die Cubo-Systeme sind in sich abgeschlossene Raumsysteme. Daher werden zur Beurteilung des Luftschallschutzes die Standard-Schallpegeldifferenzen $D_{nT,w,R}$ angegeben. Die Angabe als Rechenwert erfolgt auf Grundlage einer nicht mehr notwendigen Prognose, da bereits das gesamte System betrachtet wurde. Die angesetzten Vorhaltemaße betragen bei gemessenen Konstruktionen 2 dB, bei prognostizierten Konstruktionen wurde zusätzlich eine Prognoseunsicherheit von 3 dB berücksichtigt. Vergleiche zwischen gemessenen Norm-Trittschallpegel $L_{n,w}$ innerhalb eines Cubo-Systems und Messungen der Deckenkonstruktionen im Deckenprüfstand mit unterdrückter Flankenwegsübertragung ergaben keine nennenswerte Unterschiede, sodass die folgenden Werte der Norm-Trittschallpegel teilweise unmittelbar aus Messungen im Deckenprüfstand übernommen wurden. Wie bereits beim Luftschallschutz wurde auch beim Norm-Trittschallpegel ein Vorhaltemaß von 2 dB zwischen Messwert und Rechenwerte sowie weitere 3 dB bei bei der Umrechnung von Prognosewerte in Rechenwerte berücksichtigt.

K375.de Cubo Basis

Z. B. K375.de, 12,5 mm Diamant + 12,5 mm Silentboard

- Bewertetes Standard-Schallpegeldifferenz D_{nT.w.R}: 37 bis 55 dB
- Einfachständerwerk MW/CW 100
- Doppelprofil UA/CW 100
- Zweilagige Beplankung
- Feuerwiderstand bis F90


K376.de Cubo Empore

Z. B. K376.de, 2x 20 mm Fireboard

- Bewertetes Standard-Schallpegeldifferenz D_{nT,w,R}: 31 bis 59 dB
 Bewertetes Norm-Trittschallpegel L_{n,w,R}: 87 bis 49 dB
 Einfachständerwerk MW/CW 100
 Doppelprofil UA 100
 - _ .. .
 - Zweilagige Beplankung
- Feuerwiderstand bis F90

K376P.de Cubo Plus Empore

Z. B. K376P.de, 2x 12,5 mm Diamant

- \blacksquare Bewertetes Standard-Schallpegeldifferenz $D_{nT,w,R}$: 39 bis 57 dB
- Bewertetes Norm-Trittschallpegel L_{n.w.R}: 79 bis 49 dB
- Einfachständerwerk MW/CW 100
- Cocoon Transformer DT-Profil
- Zweilagige Beplankung
- Feuerwiderstand bis F90

K375.de Cubo Basis

Systemvarianten Maße in mm

Knauf System Schemazeichnung Wand	ındsklasse	Cub	lankui o Dec r- und	ke	rseite Mindest-		o Wän en und	nde d inne	en Mindest-	Profil Knauf MW	Schallschutz Standard- Schallpegeldifferenz
≤ 625 ≤ 625	Feuerwiderstandsklasse	Diamant	Silentboard	Fireboard	Dicke d mm	Diamant	Silentboard	Fireboard	Dicke d mm	h mm	$\mathbf{D_{nT,w,R}}^{1)}$ (C C _{tr})
K375.de Cubo Basis (Cubo De							U)		111111	ma	UD.
Schemazeichnungen Decke		•			12,5	•			12,5		41 (-3 I -9)
	_	•			12,5	•			2x 12,5		42 (-2 l -8)
		•			12,5	•	•		12,5 + 12,5		46 (-4 I -9)
		•			2x 12,5	•			2x 12,5		49 (-3 -8)
		•			2x 12,5	•	•		12,5 + 12,5	100	≥ 49 (-2 -8)
≤ 500 ≤ 500	F30	•	•		12,5 + 12,5	•			2x 12,5		50 (-2 l -6)
		•	•		12,5 + 12,5	•	•		12,5 + 12,5		55 (-4 I -11)
	F90			•	2x 20			•	2x 20		44 (-2 l -6)
K375.de Cubo Basis (Cubo De	cke Do	ppelp	rofil U	A 100	Direkt bepla	nkt)					
	F30	•			2x 12,5	•			2x 12,5	400	41 (-3 -8)
≤500 ≤500	F90			•	2x 20			•	2x 20	100	37 (-3 -7)
K375.de Cubo Basis (Cubo De	cke Do	ppelp	rofil U	A 100	+ Federschi	ene)					
		•			2x 12,5	•			2x 12,5		50 (-3 l -6)
•	F30	•			2x 12,5	•	•		12,5 + 12,5	100	51 (-2 -7)
≤ 500 ≤ 500	F90			•	2x 20			•	2x 20		44 (-3 -6)

¹⁾ Standard-Schallpegeldifferenz für freistehenden Cubo Basis, Innenabmessungen 3,9 m x 2,1 m x 2,6 m (L x B x H), Wandaufbau mit Ständerprofilen MW 100 (bei CW 100 Abminderung um 1 dB), im Wandhohlraum Mineralwolle **G** mit Füllgrad ≥ 80 % (Mineralwolle-Dämmschicht nach EN 13162, längenbezogener Strömungswiderstand nach DIN EN 29053 r ≥ 5 kPa·s/m²).

Kursive Werte sind berechnete Werte inkl. einer Prognoseunsicherheit von 3 dB.

Schallschutz-Nachweis
Contained nationals
T013-04.12
1010 01.12

	Hinweise auf Seite 3 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Cubo Raum-in-Raum Systeme K37.de.

Systemvarianten																	Maße in mm
Knauf System	Se			kung												Schallschutz	
Schemazeichnung Wand	Feuerwiderstandsklasse			ecke	:								/änd		Profil	Standard-	Norm-
0	ands	Ob	erse	ite		Mind	Uni	erse	eite	Mind	Au	ßen (und i	nnen Mind	Knauf MW	Schallpegel- differenz	Trittschall- pegel
	erst			_	F	Dicke		Ē	_	Dicke		힏	_	Dicke	19199	$\mathbf{D}_{nT,w,R}^{(1)}$	L _{n,w,R} ²⁾
	Nid		ant	oarc	18 ×		ant	tboa	oarc		ant	tboa	oarc			$(C \mid C_{tr})$	$(C_1 \mid C_{1,50-2500})$
≤ 625 ≤ 625	ene-	HWP	Diamant	Fireboard	Brio 18 WF	d mm	Diamant	Silentboard	Fireboard	d mm	Diamant	Silentboard	Fireboard	d mm	h mm	dΒ	dB
K376.de Cubo Empore (Cub											_	U,	_	111111	111111	uВ	uБ
Schemazeichnungen Decke	JO DEC	AC II	iit O	A 100	ן טט	ppeipioiii	טווכ	NI DI	- Piai	ikij						31	87
Scriemazeichhungen Decke		•				22	•			12,5	•			2x 12,5		(-2 I -5)	(-3 I -2)
, 1	-															39	78
		•				22	•			2x 12,5	•			2x 12,5		(-3 -7)	(-1 0)
		•				22									100	43	76
≤ 500 ≤ 500	F30					+	•			2x 12,5	•			2x 12,5		(-4 I -8)	(-1 I -1)
■ 500 500		_	•			12,5											, ,
	F90	•				22 +			•	2x 20				2x 20		38	81
				•		25				-X -V				-XV		(-3 I -7)	(-4 -4)
K376.de Cubo Empore (Cub	o Dec	ke n	nit U	A 100) Doj	ppelprofil	+ Fe	ders	chie	ne)							
		•				22										50	04
						+	•			2x 12,5	•			2x 12,5		53 (-4 I -8)	61 (-4 -1)
			•			12,5										(110)	(1 1 1)
		•				22	_			0 40 5				0., 40 E		52	56
<u> </u>						+ 28 ³⁾	•			2x 12,5	•			2x 12,5		(-4 I -8)	(-3 1)
	F30	•				22					•			12,5			
						+	•			2x 12,5				+	100	54 (-2 I -7)	56 (-4 1)
≤ 500 ≤ 500					•	28 ³⁾						•		12,5		(-21-7)	(-4 1 1)
→		•				22					•			18		59	55
						28 ³⁾	•			2x 12,5				+ 12,5		(-3 I -8)	(-4 1)
		•				22								12,0			
	F90					+			•	2x 20			•	2x 20		47	70
				•		25										(-2 I -3)	(-8 I -3)
K376.de Cubo Empore (Cub	o Dec	ke n	nit U	A 100) Doj	ppelprofil	+ C[)-Pro	ofil n	nit Direkts	chw	inga	bhän	iger)			
-																	
TYYYYYY P																	
		•				22	•			18	•			18		59	49
2	F30					+				+				+	100	(-2 I -7)	(0 4)
00000					•	28 ³⁾		•		12,5		•		12,5		, ,	, ,
≤ 500 ≤ 500																	
- 1																	

¹⁾ Standard-Schallpegeldifferenz für freistehenden Cubo Empore, Innenabmessungen 3,9 m x 2,1 m x 2,6 m (L x B x H), Wandaufbau mit Ständerprofilen MW 100 (bei CW 100 Abminderung um 1 dB), im Wandhohlraum Mineralwolle (G) mit Füllgrad ≥ 80 % (Mineralwolle-Dämmschicht nach EN 13162, längenbezogener Strömungswiderstand nach DIN EN 29053 r ≥ 5 kPa·s/m²).

Kursive Werte sind berechnete Werte inkl. einer Prognoseunsicherheit von 3 dB im Luft- und Trittschall.

Schallschutz-Nachweis
T013-04.12

	Hinweise auf Seite 3 beachten.
Hinweise	Weitere Angaben zu Planung und Aus

Weitere Angaben zu Planung und Ausführung siehe Detailblatt Knauf Cubo Raum-in-Raum Systeme K37.de.

²⁾ Norm-Trittschallpegel für freistehenden Cubo Empore (Messung der Decke allein).

³⁾ Decklage

K376P.de Cubo Plus Empore

Systemvarianten Maße in mm

Knauf System Schemazeichnung Wand	dsklasse	Cu						Cubo Plus Wände Profil Außen und innen Knauf			Schallschutz Standard- Schallpegel-	Norm- Trittschall-			
≤ 625 ≤ 625	Feuerwiderstandsklasse	HWP	Gifafloor FHB	Diamant	Brio 18 WF	Mind Dicke d mm	Diamant	Silentboard	Mind Dicke d mm	Diamant	Silentboard	Mind Dicke d mm	h mm	$\begin{aligned} & \textbf{differenz} \\ & \textbf{D}_{\textbf{nT,w,R}}^{ 1)} \\ & (\textbf{C} \mid \textbf{C}_{\text{tr}}) \\ & \textbf{dB} \end{aligned}$	pegel $L_{n,w,R}^{2)}$ (C ₁ I C _{1,50-2500}) dB
K376P.de Cubo Plus Empe	ore (Cı	ubo	Deck	ke mi	t Cod	coon Transformer	DT-P	rofil	97/50/1,5	Dire	kt be	plankt)			
Schemazeichnungen Decke		•				22	•		12,5	•		2x 12,5		39 (-3 I -8)	79 (-0,6 0,0)
1	_	•				22	•		2x 12,5	•		2x 12,5		41 (-3 I -7)	76 (-0,6 0,0)
≤ 500 ≤ 500	_	•				22		•	2x 12,5	•		2x 12,5	100	44 (-3 I -9)	73 (0,2 0,9)
			•		•	28 + 28	•		12,5	•		2x 12,5		46 (-3 I -10)	69 (1,5 2,3)
	F30		•		•	28 + 28	•	•	12,5 + 12,5	•		2x 12,5		53 (-4 I -11)	63 (1,4 3,5)
K376P.de Cubo Plus Empe	ore (Cı	ubo	Deck	ce mi	t Cod	coon Transformer	DT-P	rofil	197/50/2,	0 + F	eder	schiene)			
		•				22		•	12,5	•		2x 12,5		52 (-3 I -6)	63 (0,8 3,5)
		•				22		•	2x 12,5	•		2x 12,5		53 (-3 I -5)	59 (-0,8 1,7)
		•			•	22 + 28		•	12,5	•		2x 12,5	400	54 (-3 I -6)	54 (-1,4 5,6)
	-		•			28	•		12,5	•		2x 12,5	100	53 (-3 I -6)	73 (-11,5 I -8,5)
			•			28	•		2x 12,5	•		2x 12,5		54 (-4 I -6)	70 (-11,6 I -9,0)
			•		•	28 + 28	•		12,5	•		2x 12,5		54 (-3 I -6)	54 (-1,8 6,4)

Die angegebenen Werte sind Prognosewerte inkl. einer Prognoseunsicherheit von 3 dB.

Schallschutz-Nachweis
T 016-09.16

	Hinweise auf Seite 3 beachten.
Hinweise	Weitere Angaben zu Planung und Ausführung siehe Technische Information Knauf Cubo Plus Tro144.de.

²⁾ Norm-Trittschallpegel für freistehenden Cubo

K376P.de Cubo Plus Empore

Systemvarianten (Fortsetzung)

Maße in mm

Knauf System Schemazeichnung Wand	ndsklasse	Cu	Beplankung Cubo Plus Decke Oberseite				Un	Unterseite Außen und innen			Profil Knauf	Schallschutz Standard- Schallpegel-	Norm- Trittschall-										
≤ 625 ≤ 625	Feuerwiderstandsklasse	HWP	Gifafloor FHB	Diamant	Brio 18 WF	Mind Dicke d mm	Diamant	Silentboard	Mind Dicke d mm	Diamant	Silentboard	Mind Dicke d mm	MW h mm	$\begin{aligned} & \textbf{differenz} \\ & \textbf{D}_{\textbf{nT,w,R}}^{ 1)} \\ & (\textbf{C} \mid \textbf{C}_{tr}) \\ & \textbf{dB} \end{aligned}$	$\begin{aligned} & \textbf{pegel} \\ & \textbf{L}_{\textbf{n,w,R}}^{} ^{2)} \\ & (\textbf{C}_{\textbf{I}} \ \textbf{I} \ \textbf{C}_{\textbf{I},50\text{-}2500}) \\ & \textbf{dB} \end{aligned}$								
K376P.de Cubo Plus Empo	ore (Cı	ıbo l	Deck	e mi	t Co	coon Transformer	DT-F	Profil	197/50/2,	0 + F	eder	schiene)											
Schemazeichnungen Decke		•			•	22 + 28		•	2x 12,5	•	•	12,5 + 12,5		57 (-2 I -8)	52 (-2,0 2,0)								
D	F30	•			•	22 + 22 mm TPE 12-2 + 28		•	2x 12,5	•	•	12,5 + 12,5	100	57 (-2 I -8)	49 (-0,1 4,8)								
			•			38	•		2x 12,5	•		2x 12,5		54 (-4 I -6)	70 (-11,6 I -9,0)								
≤ 500 ≤ 500			•		•	28 + 28	•		2x 12,5	•		2x 12,5		54 (-3 I -5)	51 (-1,4 8,6)								
K376P.de Cubo Plus Empo	ore (Cı	ıbo l	Deck	e mi	t Co	coon Transformer	DT-F	Profil	197/50/2,	0 + C	D-Pr	ofil mit Dir	ektschwi	ngabhänger)									
		•				22	•		2x 12,5	•		2x 12,5		51 (-2 I -5)	61 (0,8 3,5)								
D	_		•			28	•		2x 12,5	•		2x 12,5		54 (-4 I -6)	64 (-7,2 -2,2)								
		•			•	22 + 28	•		2x 12,5	•		2x 12,5		54 (-3 I -6)	52 (0,1 7,6)								
100	F30	•			•	22 + 28	•		2x 12,5	•	•	12,5 + 12,5	100	57 (-3 I -9)	52 (0,1 7,6)								
≤ 500 ≤ 500												•			38	•		2x 12,5	•		2x 12,5		54 (-4 I -6)
			•		•	28 + 28	•		2x 12,5	•		2x 12,5		54 (-3 I -6)	49 (0,4 9,2)								

¹⁾ Standard-Schallpegeldifferenz für freistehenden Cubo Plus, Wandaufbau mit Ständerprofilen MW 100 (Werte in blau: CW 100), im Wandhohlraum 80 mm Mineralwolle (G) (Mineralwolle-Dämmschicht nach EN 13162, längenbezogener Strömungswiderstand nach DIN EN 29053 r≥ 5 kPa·s/m²).

Die angegebenen Werte sind Prognosewerte inkl. einer Prognoseunsicherheit von 3 dB.

²⁾ Norm-Trittschallpegel für freistehenden Cubo

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks Johnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 Iphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke **Knauf PFT**

Maschinentechnik und Anlagenbau

/larbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

SS07.de/ger/01.19/0/OD

Trockenbau-Systeme

AK01.de
Technische Broschüre 02/2018

Raumakustik mit Knauf Grundlagen und Konzepte

Cleaneo Classic Cleaneo Module Cleaneo Single

Inhalt

Einleitung	
Hinweise	3
Nutzungshinweise	3
Bestimmungsgemäßer Gebrauch von Knauf Systemen	3
Allgemeine Hinweise	3
Grundlagen	
Ziel raumakustischer Maßnahmen	5
Bedeutung der DIN 18041:2004 und DIN 18041:2016	6
Bedeutung der DIN 18041:2004 und DIN 18041:2016	6
Normative Anforderungen und Empfehlungen	
Definitionen der Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654	9
Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654	9
Konzepte	
Einleitung	12
Räume der Gruppe A	13
Grundsätzliches	13
Unterrichtsraum mit Inklusion	14
Unterrichtsraum ohne Inklusion	16
Kindergarten-Gruppenraum mit Inklusion	
Kindergarten-Gruppenraum ohne Inklusion	
Musikraum mit aktivem Musizieren und Gesang	
Hörsäle	
Hörsäle ohne Sitzreihenüberhöhung	
Hörsäle mit Sitzreihenüberhöhung	
Gemeinde- oder Versammlungsraum	
Tagungsräume ohne Inklusion	
Sporthallen	
Räume der Gruppe B	
Grundsätzliches	39
Einpersonen- und Zweipersonenbüros	40
Gruppen- und Mehrpersonenbüros	
Aulen in Schulen	
Verkehrsflächen	
Kantinen	
Empfangshallen mit Arbeitsplatz	
Bibliothek	
Restaurants	
Referenzen	00
Evangelischer Kindergarten St. Nikolaus Albertshofen	eu.
Firmenzentrale Knauf Gips KG	
·	
Stadtbibliothek Hanau	

Nutzungshinweise

Hinweise zum Dokument

Diese Technische Broschüre ist die Informationsunterlage zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP und/oder allgemeine bauaufsichtliche Zulassungen abZ) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt. Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Verweise auf weitere Dokumente

Technische Broschüren

- Raumakustik mit Knauf Daten für die Planung, AK02.de
- Schallschutz mit Knauf Grundlagen, SS01.de
- Schallschutz mit Knauf Innenwände, SS02.de
- Schallschutz mit Knauf Decken, SS03.de
- Schallschutz mit Knauf Außenbauteile, SS04.de
- Schallschutz mit Knauf Raum-in-Raum-Systeme, SS05.de

Technische Blätter

■ Technische Blätter der einzelnen Knauf Systemkomponenten

Detailblätter

- Knauf Cleaneo Akustik-Plattendecken, D12.de
- Knauf Cleaneo Akustik-Kassettendecken, D14.de
- Knauf Cleaneo Akustik-Wandsysteme, AK04.de

Knauf-App TOPview

In der App TOPview finden sie interessante Aspekte zu den Themen Akustik erleben und Akustik messen. Die App steht für iOS und Android zur Verfügung, siehe auch auf der Knauf Homepage unter:

https://www.knauf.de/profi/tools-services/tools/vr-app-topview/

Bestimmungsgemäßer Gebrauch von Knauf Systemen

Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. zugelassen sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

Allgemeine Hinweise

Begriffsdefinitionen

A/V-Verhältnis

Äquivalente Schallabsorptionsfläche A in m² zu Raumvolumen V in m³

Bedämpfung

Unter einer guten akustischen Bedämpfung eines Raumes versteht man die ausreichende Reduktion des Lärmpegels und Einstellung einer auf die Raumsituation angepassten Nachhallzeit. Je höher der Zahlenwert des AVV-Verhältnisses, desto mehr Schallabsorptionsfläche befindet sich im Raum und um so stärker ist der Raum akustisch bedämpft.

Grundlagen

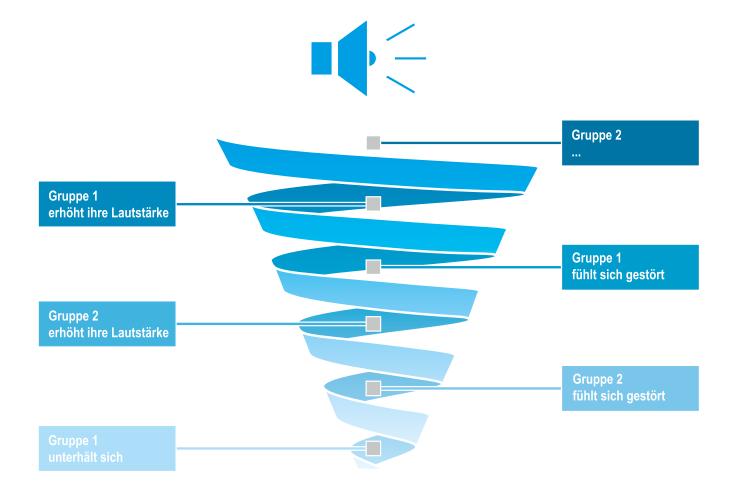
Kurze Einführung in die Raumakustik

Ist der Nachbar zu laut, können Decken und Wände zwischen den Räumen akustisch aufgewertet werden, dringt Straßenverkehrslärm ins Innere, kann das Fenster geschlossen werden. Was aber tun, wenn der Lärm im Raum selbst entsteht, in dem man sich gerade befindet. Hier greift die Raumakustik. Dabei ist der Begriff Lärm zu allgemein gefasst. Innerhalb eines Raumes kommt es nicht nur darauf an, den von Arbeitskollegen verursachten Lärmpegel zu senken, das ausgelassene Toben von Kindern in Kindergärten erträglicher zu machen oder Schallimmissionen von Maschinen zu reduzieren. Für manche Räume ist es notwendig, den Schall in die richtigen Bahnen zu lenken.

So kommt es beispielsweise in Hörsälen darauf an, alle Anwesenden ausreichend mit Schallenergie zu versorgen, damit das gesprochene Wort auch in der letzten Reihe ohne Verlust der Sprachverständlichkeit übertragen wird.

Auch in Hinblick auf die Auswirkungen der architektonischen Trends hin zu glatten Flächen wie Sichtbeton, Glas und puristischen Einrichtungen ist das Wissen um die Notwendigkeit der Raumakustik von großer Bedeutung.

Eine mangelhafte Raumakustik führt in den unterschiedlichen Raumnutzungen zu differenzierten Problemen:


- Störende Schallreflexionen, mit negativen Auswirkungen auf die Sprachverständlichkeit mindern die Konzentrationsfähigkeit bei sprachlichen Darbietungen
- Eine mangelhafte Versorgung mit Direktschall bei Sprachveranstaltungen und damit der Verlust der Wort- und Satzverständlichkeit führt zu einer Unruhe und "Hintergrundgemurmel" bei den Anwesenden

- Eine Überlagerung von Gesprächen bei mehreren Sprechern führt bei einer mangelhaften Raumakustik zum Verschwimmen der Hörsamkeit und somit zu einer Anhebung der Sprachlautstärke, wodurch sich dieser Effekt weiter verstärkt
- Keine oder unzureichende Berücksichtigung der raumakustischen Qualität führt zu hohen Lärmpegeln in geschlossenen Räumen und dadurch zu
 - Erhöhten Anforderungen an die kognitiven Prozesse
 - Lediglich geringer Abnahme des Lärmpegels, auch auf eine längere Distanz
 - Auralen (das Gehör betreffend) und extraauralen (Auswirkungen auf die Psyche und den Organismus außerhalb des Gehörs) Schäden

Die Lautheitsspirale

Bei mehreren Sprechern innerhalb eines Raumes (in Schulen, Büros, Restaurants usw.) und einer schlechten raumakustischen Qualität kommt es aufgrund des folgenden Effekts zu einem schnellen Aufschaukeln des Lärmpegels:

Eine Gruppen von Personen unterhält sich. Eine weitere Gruppe in der Nähe fühlt sich dadurch gestört und erhebt unbewusst ihre Sprachlautstärke, um ihre Kommunikation ungestört fortzusetzen. Das wiederum animiert, ebenfalls unbewusst, die erste Gruppe dazu, ihrerseits die Stimmlautstärke zu erhöhen um sich wiederum verständlich zu machen. Somit setzt sich die Lautheitsspirale in Gang. Der Effekt verstärkt sich zusätzlich mit jeder weiteren Gruppe. Das ist beispielsweise der Grund dafür, dass man sich in Restaurants oder Kantinen nicht unterhalten kann ohne sich anzuschreien. Ziel von raumakustischen Maßnahmen muss es demnach sein, eine dem Verwendungszweck entsprechende Nutzung des Raumes zu gewährleisten und bereits das Entstehen der Lautheitsspirale zu verhindern

Grundlagen

Bedeutung der DIN 18041:2004 und DIN 18041:2016

Bedeutung der DIN 18041:2004 und DIN 18041:2016

Prinzipiell sind sowohl die DIN 18041:2004 als auch die DIN 18041:2016 baurechtlich nicht eingeführt. Jedoch wird in einer Vielzahl weiterer Normen und Richtlinien auf diese Norm verwiesen. So beispielsweise in:

- DIN 18040-1: Barrierefreies Bauen
- Technische Regeln für Arbeitsstätten (ASR)
- Zertifizierungssysteme wie BNB und DGNB

Darüber hinaus ist diese Norm als allgemein anerkannte Regel der Technik anzusehen.

Ein wesentlicher Unterschied zwischen der DIN 18041:2004 und der DIN 18041:2016 sind neben der Angabe von Orientierungswerten für das Verhältnis von äquivalenter Schallabsorptionsfläche zum Raumvolumen die deutlichen Hinweise zur notwendigen Berücksichtigung der Inklusion von Menschen mit Handicap. So ist bei der Planung von Räumen für sprachliche Darbietungen/Kommunikation besonders auf Personen mit einem erhöhten Bedürfnis einer guten Sprachwahrnehmung zu achten.

Entsprechend sind Neubauten gemäß Bundesgleichstellungsgesetz sowie vergleichbaren Landesregelungen und der UN-Konvention über die Rechte von Menschen mit Behinderung inklusiv zu gestalten.

Normative Anforderungen und Empfehlungen

Der Normenbezug dieser Broschüre beschränkt sich auf die DIN 18041:2004 bzw. DIN 18041:2016 und somit überwiegend auf Anforderungen an eine Soll-Nachhallzeit und Orientierungswerte für das A/V-Verhältnis (äquivalente Schallabsorptionsfläche A zu Raumvolumen V).

Die **Nachhallzeit** T ist die Zeit in Sekunden, die ein innerhalb eines Raumes eingebrachtes Schallsignal benötigt, um vom ursprünglichen Schalldruckpegel um 60 dB abzufallen. Eine Differenz von 60 dB entspricht 1 Millionstel der ursprünglichen Schallenergie.

Da diese Differenz aufgrund äußerer Umstände nicht immer erzeugt werden kann, wird die Nachhallzeit (NHZ) in der Praxis häufig als T30 oder T20 angegeben. Das bedeutet, es wird lediglich die Zeit gemessen, die das eingebrachte Schallsignal benötigt, um 30 dB bzw. 20 dB zu fallen. Anschließend findet eine Umrechnung auf T60 statt.

Im Wesentlichen ist die Nachhallzeit abhängig von:

- Raumvolumen
- Raumgeometrie
- Oberflächenbeschaffenheit der Raumbegrenzungsflächen
- Einrichtungszustand

Befinden sich viele schallabsorbierende Flächen in einem Raum, werden die Schallreflexionen des eingebrachten Schallsignals stark bedämpft und die Nachhallzeit sinkt. Demzufolge findet eine schnelle Reduktion der Schallenergie statt und der Geräuschpegel wird reduziert.

Werden hingegen keine oder kaum schallabsorbierende Materialien in einem Raum vorgesehen, verstärken die Schallreflexionen das eingebrachte Schallsignal und der Geräuschpegel erhöht sich.

Neben den Anforderungen an die Nachhallzeit werden in der DIN 18041:2016 Orientierungswerte hinsichtlich des A/V-Verhältnisses angegeben. Dabei steht A für die äquivalente Schallabsorptionsfläche und V für das Raumvolumen.

Die äquivalente Schallabsorptionsfläche innerhalb eines Raumes gibt Aufschluss darüber, wie viel Quadratmeter der gesamten Raumoberflächen ggf. inkl. Mobiliar die Schallenergie zu 100% absorbieren. Je höher das A/V-Verhältnis ist, desto stärker ist der Raum bedämpft.

Tabelle 1: Volumenkennzahlen für verschiedene Hauptnutzungen eines Raumes

Hauptnutzung des Raumes	Volumenkennzahl k in m³ pro Platz
Sprachdarbietung	4 bis 6
Musik- und Sprachdarbietung	6 bis 8
Musikdarbietung	7 bis 12
Kleine Musikproberäume für bis zu 10 gleichzeitig Musizierenden	15 bis 20
Größere Musikproberäume für bis zu 10 gleichzeitig Musizierenden	30 bis 50

Tabelle 2: Anforderungen an die Nachhallzeit in Abhängigkeit der Nutzungsarten

Raum- gruppe	Nutzungsart	Anforderung
A1	Musik	$T_{\text{soll, A1}} = \left(0.45 \log \frac{V}{\text{m}^3} + 0.07\right) \text{ s}$ 30 m ³ \le V < 1000 m ³
A2	Sprache/Vortrag	$T_{\text{soll, A2}} = \left(0.37 \log \frac{V}{\text{m}^3} - 0.14\right) \text{ s}$ $50 \text{ m}^3 \le V < 5000 \text{ m}^3$
A3	Unterricht/Kommunikation (bis 1000 m³) sowie Spra- che/Vortrag (bis 5000 m³) inklusiv	$T_{\text{soll, A3}} = \left(0.32 \log \frac{V}{\text{m}^3} - 0.17\right) \text{ s}$ $30 \text{ m}^3 \le V < 5000 \text{ m}^3$
A4	Unterricht/Kommunikati- on inklusiv	$T_{\text{soll, A4}} = \left(0.26 \log \frac{V}{\text{m}^3} - 0.14\right) \text{ s}$ 30 m ³ ≤ V < 500 m ³
A5	Sport	$T_{soll, A5} = \left(0.75 \log \frac{V}{m^3} - 1.00\right) s$ $200 \text{ m}^3 \le V < 10000 \text{ m}^3$ $T_{soll, A5} = 2.0 \text{ s}$ $V \ge 10000 \text{ s}$

Bei der Auslegung der akustischen Anforderungen und Empfehlungen unterscheidet die Norm zwischen zwei Anwendungen:

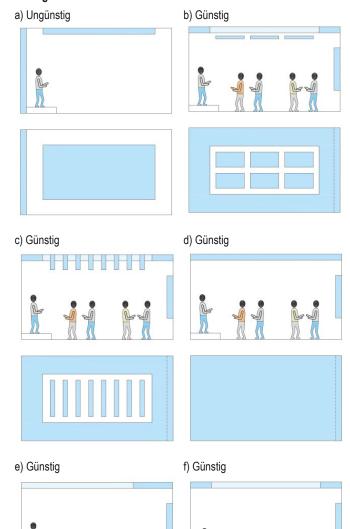
Räume mit einer Hörsamkeit über mittlere und größere Entfernung, bei denen es neben einer dem Verwendungszweck entsprechenden Grundbedämpfung der Geräuschpegel auf eine ausreichende Versorgung aller anwesenden Personen mit Schallenergie ankommt. Diese Räume werden in die **Gruppe A** eingeteilt, siehe Tabelle 2. Hierzu zählen unter anderem:

- Unterrichtsräume
- Gruppenräume in Kindergärten
- Konferenz- und Seminarräume
- Hörsäle
- Sport- und Schwimmhallen

Dementgegen stehen die Räume der **Gruppe B** bei denen es auf eine möglichst hohe Geräuschpegelminderung und Begrenzung der Halligkeit ankommt, siehe Tabelle 3 auf Seite 9. Hierunter fallen unter anderem:

- Verkehrsflächen mit Aufenthaltsqualität
- Speiseräume und Kantinen
- Ausstellungsräume
- Eingangshallen
- Büros

Die einzuhaltende Nachhallzeit in den Räumen der Gruppe A ist abhängig vom Raumvolumen und der Nutzungsart.


Hierbei wird nach DIN 18041:2016 zwischen 5 Nutzungsarten unterschieden, siehe Tabelle 2 auf Seite 6.

Entsprechend der Verwendung der Räume sollte in Abhängigkeit des Volumens eine Spanne von vorgesehenen Plätzen weder über- noch unterschritten werden, siehe Tabelle 1 auf Seite 6. Befinden sich in einem kleinen Raum für den angestrebten Verwendungszweck zu viele Personen, kann es dazu führen, dass die vorgeschriebene Nachhallzeit unterschritten wird und der Raum somit zu stark bedämpft ist. Das hat insbesondere für musikalische Darbietungen, bei denen eine bestimmte Nachhallzeit nicht unterschritten werden soll, negative Auswirkungen auf das Klangbild. Für sprachliche Darbietungen sind in diesem Fall ggf. elektroakustische Beschallungsanlagen notwendig. Befinden sich hingegen zu wenige Personen in einem Raum, der beispielsweise zur sprachlichen Nutzung ausgelegt ist, kann es zu einer Überschreitung der angestrebten Nachhallzeit und somit zu einer schlechten Sprachverständlichkeit kommen. Demnach sind bestimmte Volumenkennzahlen für verschiedene Hauptnutzungszwecke anzustreben.

Neben der Einhaltung der Soll-Nachhallzeiten und dem Berücksichtigen der Volumenkennzahlen ist auf die richtige Positionierung und Verteilung schallabsorbierender und reflektierender Flächen zu achten, siehe Abbildungen. Prinzipiell sollten schallabsorbierende Materialien möglichst gleichmäßig im Raum verteilt werden. Um störende Mehrfachreflexionen zwischen parallel zueinander stehenden Wänden zu vermeiden, ist bei kleineren Räumen bis ca. 250 m³ die dem Redner gegenüberliegende Wandfläche zumindest teilweise schallabsorbierend zu gestalten.

Störende Echos treten ab einer zeitlichen Differenz zwischen dem Eintreffen des Direktschall und der ersten Schallreflexion von 50 ms auf, was einer Wegstrecke von 17 m entspricht. Entsprechend ist bei der Planung größerer Räume darauf zu achten, dass diese Wegdifferenz zwischen dem Direktschall und den Reflexionen durch richtig positionierte schallabsorbierende oder schalllenkende Flächen nicht überschritten wird, siehe "Berücksichtigung der Laufwegunterschiede zwischen Direktschall und Reflexion" auf Seite 8.

Verteilung von Schallabsorbtionsflächen für Räume kleiner bis mittlerer Raumgröße nach DIN 18041:2016

Darüber hinaus gilt es auf folgende Punkte zu achten:

- Bei größeren Räumen sollten bei parallel zueinander stehenden Flächen wenigstens eine Wandfläche teilweise schallabsorbierend, segmentiert (den Schall diffus streuend) oder mit einer Schrägstellung von min. 5° ausgeführt werden.
- Um bei größeren Räumen eine gleichmäßige Versorgung der Anwesenden mit Direktschall zu gewährleisten, ist mit gezielten, schalllenkenden Elementen zu arbeiten.
- Die Wand hinter dem Redner ist für die mittleren und hohen Frequenzen schallhart auszubilden.
- Kreisförmige und elliptische Grundrisse sollten ohne eingehender, raumakustischer Planung vermieden werden.
- Konkav gekrümmte Wand- und Deckenflächen können zu Problemen führen und bedürfen zusätzlicher, raumakustischer Maßnahmen.

Grundlagen

Bedeutung der DIN 18041:2004 und DIN 18041:2016

Bei den Räumen der Raumgruppe B wird ebenfalls zwischen 5 Nutzungsarten unterschieden, wobei an die erste Nutzungsart keine Anforderung / Empfehlung gestellt wird, siehe Tabelle 3 auf Seite 9. Der Orientierungswert zur Auslegung der raumakustischen Qualität ist lediglich von der Raumhöhe h abhängig. Das bestehende AV-Verhältnis zur Gegenüberstellung mit dem Orientierungswert wird entweder mittels eines Berechnungsverfahrens prognostiziert oder über die gemessene Nachhallzeit umgerechnet.

Bei der Prognose des bestehenden A/V-Verhältnisses werden sämtliche, im Raum verbauten Materialien mit deren Schallabsorptionsgraden hinterlegt und mit der verbauten Fläche multipliziert. Die so für jedes Material gewonnene, äquivalente Schallabsorptionsfläche wird summiert und ins Verhältnis zum Volumen gesetzt. Dieses A/V-Verhältnis kann jetzt mit den Orientierungswerten verglichen und es können ggf. weiterführende Maßnahmen ergriffen werden. In der Regel erfolgt dies frequenzabhängig in den Oktavfrequenzen von 250 Hz bis 2000 Hz.

Eine Alternative zum Prognoseverfahren ist die Messung der Nachhallzeit in bereits bestehenden Räumen. Die gemessenen Nachhallzeiten können durch die Formel von Sabine in die äquivalente Schallabsorptionsfläche umgerechnet werden.

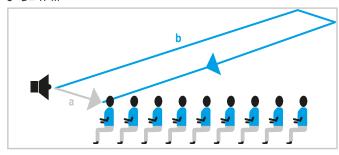
Nachhallzeitformel nach Sabine:

 $T = 0.163 \cdot V/A$

T Nachhallzeit in s

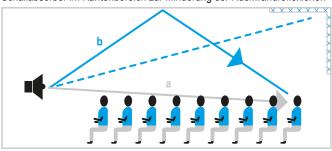
V Raumvolumen in m³

A äquivalente Schallabsorptionsfläche in m²


Da T gemessen wurde, kann die Formel auf A umgestellt und so das A/V-Verhältnis gebildet werden:

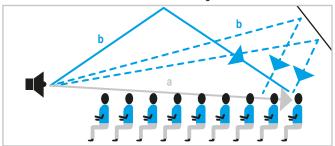
 $A = 0.163 \cdot V/T$

Berücksichtigung der Laufwegunterschiede zwischen Direktschall und Reflexion


Ungünstig

b - a ≥ 17 m

Günstig b-a<17 m


Schallabsorber im Kantenbereich zur Minderung der Rückwandreflexionen

Günstig

b-a<17 m

Reflexionsfläche im Kantenbereich zur Lenkung der Rückwandreflexionen

Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654

Tabelle 3: Orientierungswerte für das A/V-Verhältnis in Abhängigkeit der Nutzungsarten

3									
Raum- gruppe	Nutzungsart	Anforderung							
B1	Räume ohne Aufenthaltsqua- lität	Keine Anforderung							
B2	Räume zum kurzfristigen Verweilen	$AV \ge \frac{1}{4.8 + 4.69 \log\left(\frac{h}{1 \text{ m}}\right)}$							
В3	Räume zum längerfristigen Verweilen	$A/V \ge \frac{1}{3,13 + 4,69 \log\left(\frac{h}{1 \text{ m}}\right)}$							
B4	Räume mit Bedarf an Lärm- minderung und Raumkomfort	$A/V \ge \frac{1}{2,13 + 4,69 \log\left(\frac{h}{1 \text{ m}}\right)}$							
B5	Räume mit besonderen Bedarf an Lärmminderung und Raum- komfort	$A/V \ge \frac{1}{1,47 + 4,69 \log\left(\frac{h}{1 \text{ m}}\right)}$							

Definitionen der Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654

Die in einem Raum eingesetzten Baustoffe und Materialien können aus akustischer Sicht schallhart sein, das heißt keine/kaum schallabsorbierende Eigenschaften aufweisen. In diesem Fall ist der bewertete Schallabsorptionsgrad $\alpha_{\rm w}$ nahezu 0.

Im Gegenzug kann ein Material hoch schallabsorbierend sein. Wird 100% der auftreffenden Schallenergie absorbiert, d. h. die Schallenergie wird vollständig in Wärmeenergie umgewandelt, beträgt der bewertete Schallabsorptionsgrad αw nahezu 1.

- $\alpha_{_S}$ bezeichnet die Werte des frequenzabhängigen Schallabsorptionsgrades gemessen im Hallraum in Terzen. Aus ihnen wird der praktische Schallabsorptionsgrad gebildet.
- α_{p} sind die Werte des frequenzabhängigen, praktischen Schallabsorptionsgrades aus je 3 Terzen. Sie werden häufig für frequenzabhängige Prognosen herangezogen.
- α_{w} ist der bewertete Schallabsorptionsgrad. Er ist frequenzunabhängig und wird als Einzahlwert angegeben. Die Ermittlung der Einzahlbewertung erfolgt nach dem auf Seite 10 beschriebenen Verfahren.

Formindikatoren hinter dem bewerteten Schallabsorptionsgrad geben Aufschluss darüber, ob ein absorbierendes Material besonders im tiefen, mittleren oder hohen Frequenzbereich wirksam ist.

Dabei werden folgende Indikatoren verwendet:

- L, wenn das Produkt im Bereich der tiefen Frequenzen besonders wirksam ist.
 - Z. B. $\alpha_{w} = 0.60 (L)$
- M, wenn das Produkt im Bereich der mittleren Frequenzen besonders wirksam ist.
 - Z. B. $\alpha_{w} = 0.70 \text{ (M)}$
- H, wenn das Produkt im Bereich der hohen Frequenzen besonders wirksam ist.

Z. B.
$$\alpha_{yy} = 0.85$$
 (H)

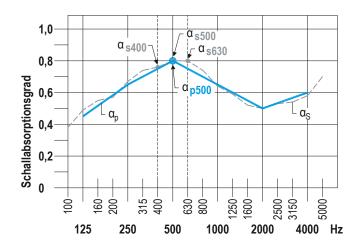
Kombinationen sind möglich.

Z. B.
$$\alpha_{w} = 0.70 \text{ (MH)}$$

Schallabsorptionsgrad und verbale Bewertung nach VDI 3755

Bewerteter Schallabsorptionsgrad $\alpha_{_{W}}$	Bewertung
≥0,80	Höchst absorbierend
0,60 - 0,75	Hoch absorbierend
0,30 – 0,55	Absorbierend
0,15 – 0,25	Gering absorbierend
≤0,10	Reflektierend

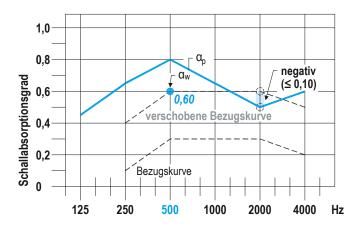
Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654


Ermittlung der Einzahlbewertung des Schallabsorptionsgrades α,,

1. Schallabsorptionsgrad

α_S = Schallabsorptionsgrad für Terzbandbreite frequenzabhängiger Wert des Schallabsorptionsgrades nach DIN EN ISO 354, gemessen in Terzbändern

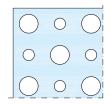
 α_p = Praktischer Schallabsorptionsgrad aus α_S auf Oktavbänder umgerechnet nach DIN EN ISO 11654


Beispiel für 500 Hz:
$$\alpha_p 500 = \frac{\alpha_S 400 + \alpha_S 500 + \alpha_S 630}{3}$$

2. Bewerteter Schallabsorptionsgrad

α_w = Bewerteter Schallabsorptionsgrad nach DIN EN ISO 11654 Einzahlangabe des Schallabsorptionsgrades ermittelt aus verschobener Bezugskurve (die Summe aller negativen Abweichungen ≤ 0,10) und der Schnittpunkt bei 500 Hz nach DIN EN ISO 11654

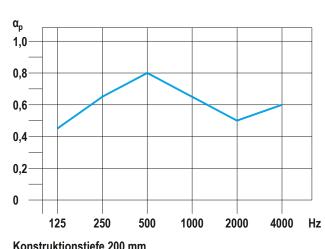
Beispiel:


3. Formindikatoren

α_{w} mit Formindikatoren = α_{w} (...)

wenn α_p für einzelne Oktavfrequenzen die Bezugskurve um \geq **0,25** überschreitet dann Zusatz:


(L) bei 250 Hz (M) bei 500 oder 1000 Hz (H) bei 2000 oder 4000 Hz


Beispiel

Versetzte Rundlochung 12/20/66 R mit Akustikvlies Lochanteil: 19,6 %


Beispiel (250 Hz): 0,65 - 0,40 = 0,25 (\geq 0,25) = (L) $\rightarrow \alpha_w$ = 0,60 (L)

Nonsti untionstiele 200 mm							
$\alpha_{\!p}$	0,45	0,65	0,80	0,65	0,50	0,60	

$$\alpha_{w}$$
 = 0,60 (L) Hoch absorbierend

Konzepte Räume der Gruppe A

Räume der Gruppe B

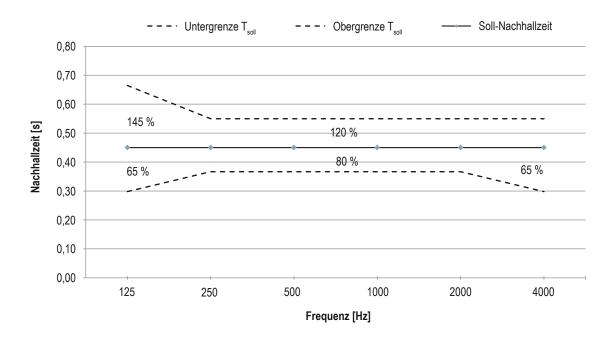
Einleitung

Auf den folgenden Seiten werden Musterausbauten für verschiedene Räume und Nutzungsarten aufgeführt. Die Materialwahl der Begrenzungsflächen sowie die Abmessungen entsprechen teilweise realitätsgetreuen Ausführungen, teilweise realistischen Annahmen. Die Musterausbauten sollen auf die Notwendigkeit raumakustischer Maßnahmen hinweisen und bei der Planung und Auslegung der Räumlichkeiten unterstützen. Wie im Kapitel Grundlagen beschrieben wird bei der Bestimmung der Anforderungen zwischen Räumen der Gruppe A und der Gruppe B unterschieden. Für die Räume der Gruppe A findet eine weitere Separation zwischen der Auslegung mit und ohne Inklusion statt.

Die Prognose der Nachhallzeit erfolgt nach der statistischen Nachhalltheorie. Bei diesem Verfahren wird die Position von absorbierenden Materialien nicht berücksichtigt. Vielmehr wird von einem diffusen Schallfeld ausgegangen. Für kleine bis mittelgroße Räume mit ausreichender Diffusität, hervorgerufen durch das Mobiliar oder anderweitigen Einrichtungen ist diese Herangehensweise ausreichend. Bei größeren Räumen oder Hallen kann in der Regel nicht von einem diffusen Schallfeld ausgegangen werden. Mit diesem Wissen und in erster Näherung wird im Folgenden dennoch die statistische Nachhalltheorie angewandt, um die Nachhallzeit zu prognostizieren.

Grundsätzliches

Die zu berechnende Soll-Nachhallzeit stellt einen Zielwert für die mittleren Frequenzen (500 Hz und 1000 Hz) dar. Da eine Auslegung der raumakustischen Qualität auf exakt diese Zielwerte nicht immer möglich ist und um ein deutliches, frequenzabhängiges Über- oder Unterschreiten der Anforderungen zu vermeiden, wird für die Räume der Raumgruppe A1 bis A4 ein Toleranzbereich angegeben, in dem die frequenzabhängige Nachhallzeit liegen muss.


Für die Raumgruppe A5 (Sport- und Schwimmhallen) ist die Soll-Nachhallzeit in den Frequenzen 250 Hz bis 2000 Hz mit einer Genauigkeit von \pm 20 % einzuhalten. Lässt sich ein Raum aufgrund seiner Verwendungen nicht eindeutig einer Raumgruppe zuordnen, ist ein gewichteter Mittelwert entsprechend der Hauptverwendung zu ermitteln.

Die definierten Anforderungen beziehen sich immer auf den besetzten und möblierten Zustand. Entsprechend ist dies bei der Auslegung des Raumes zu berücksichtigen. In der Regel wird ein Besetzungszustand von 80 % in den Prognoseberechnungen angesetzt. Ist aufgrund der Nutzung des Raumes

auch ein geringerer Besetzungszustand zu erwarten, sollte der Raum auf 80 % des Hauptbesetzungszustands ausgelegt und Kompensationsmaßnahmen ergriffen werden. Solche Kompensationsmaßnahmen sind beispielsweise schallabsorbierende Bestuhlung falls der Sitzplatz nicht besetzt ist oder mobile Absorberflächen in Form von akustisch wirksamen Vorhängen, die in Abhängigkeit des Besetzungszustandes vor einer schallharten Wandfläche geöffnet, teilweise geöffnet oder geschlossen werden können.

Die DIN 18041:2016 unterscheidet zwischen einer Nutzung der Räume mit und ohne erhöhte Anforderungen (mit und ohne Inklusion). Die definierten Anforderungen an eine Soll-Nachhallzeit mit Inklusion berücksichtigt die Notwendigkeit einer besseren raumakustischen Qualität für Menschen mit eingeschränkten Hörvermögen, Aufmerksamkeits- und Sprachschwächen sowie einer Kommunikation in einer Sprache, die nicht der Muttersprache entspricht. Insbesondere Neubauten sollten daher immer unter Berücksichtigung der erhöhten Anforderungen geplant und ausgeführt werden.

Beispielhafter Toleranzbereich für den Hauptverwendungszweck der Kommunikation und einer Soll-Nachhallzeit von 0,45 s

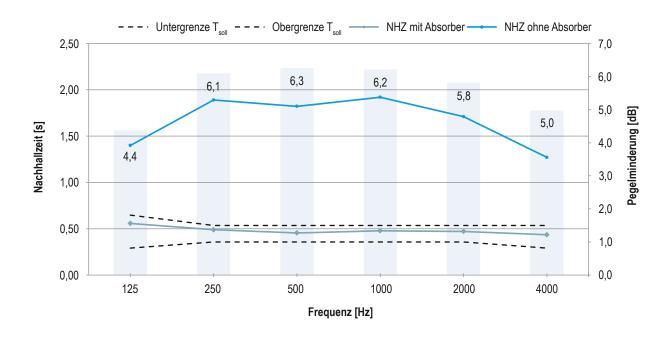
Räume der Gruppe A

Unterrichtsraum mit Inklusion

dämpfung. Vielmehr wird eine erhöhte Grundbedämpfung und damit einhergehend eine deutliche Reduktion der Lärmpegel befürwortet. Eine Ergreifung raumakustischer Maßnahmen kommt dem aktiven Unterricht insofern entgegen, dass der Stimmaufwand der Lehrer/Lehrerinnen deutlich gesenkt werden kann und somit auch die Kommunikation mit den Schülern wesentlich entspannter geführt werden kann. Somit werden Unruhen im Klassenzimmer aufgrund der raumakustischen Qualität gemindert und die Disziplin und Konzentrationsfähigkeit der Schüler erhöht.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie


10 m ■ Länge ■ Breite 6 m 3 m ■ Höhe ■ Volumen 180 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

■ Flurwand Leichtbauwand ■ Trennwände Leichtbauwand Linoleum ■ Bodenbelag Decke Stahlbetondecke

Raumakustische Daten						
Prognostizierte Nachhallzeit inkl. 20 Schüler, ohne Absorber	T = 1,67 s					
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 0.36 - 0.54 s					
Prognostizierte Nachhallzeit	T = 0,47 s					
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz	5 – 6 dB					

Die Anforderung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Gerade Quadratlochung 12/25 Q	Konstruktionstiefe 200 mm	Vollflächig
Wandabsorber	W112C.de Cleaneo Akustik-Wand Lochbild: Gerade Quadratlochung 12/25 Q	Wanddicke 132,5 mm	Flächenanteil Cleaneo Akustikplatten 50 %

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_w$
Deckenabsorber (z. B. Belgravia, Lochbild: Unity 3)	≥ 0,70
Wandabsorber (z. B. Adit)	≥ 0,80

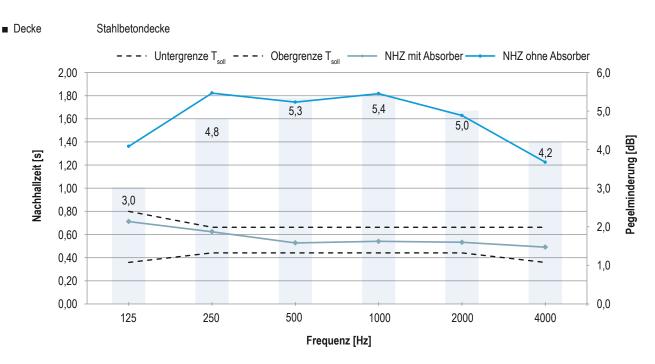
Eine Produktübersicht befindet sich in der Technischen Broschüre Raumakustik mit Knauf – Daten für die Planung.

Unterrichtsraum ohne Inklusion

Konzept für Unterrichtsräume ohne Inklusion

Eingangsdaten für die raumakustische Prognose

Raumgeometrie


■ Länge 10 m
■ Breite 6 m
■ Höhe 3 m
■ Volumen 180 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

Flurwand LeichtbauwandTrennwände LeichtbauwandBodenbelag Linoleum

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 20 Schüler, ohne Absorber T = 1,67 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz T = 0,44 – 0,66 s	
Prognostizierte Nachhallzeit	T = 0,56 s
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 4 – 5 dB	

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D145.de Akustik-Kassettendecke Belgravia Lochbild: Tangent	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	Wandabsorber Adit	_	1/3 der Fläche der Rückwand

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_w$
Deckenabsorber (z. B. Cleaneo Akustik-Plattendecke, Lochbild: 8/18 R mit Akustikvlies)	≥ 0,60
Wandabsorber (z. B. Cleaneo Akustik-Wand 1/3 gelocht, Lochbild: 8/18 R)	≥ 0,80

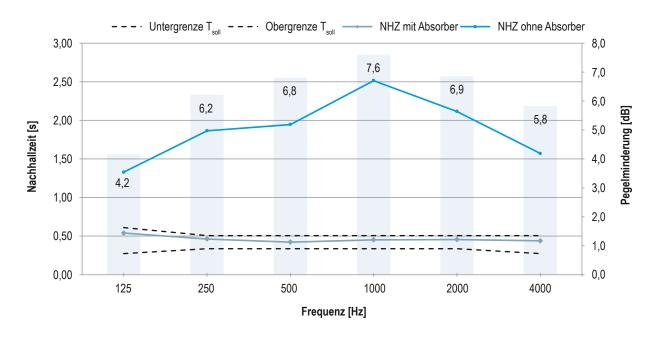
Kindergarten-Gruppenraum mit Inklusion

Insbesondere in Kindergärten und Kindertagesstätten zählt Lärm zu den Hauptbelastungen für Erzieherinnen und Erzieher aber auch für die Kinder an sich. Eine hohe Lärmbelastung bringt nicht nur aurale Schädigungen (Schädigungen des Gehörs) mit sich, sondern hat darüber hinaus Auswirkungen auf das Herz-Kreislaufsystem, die Psyche des Menschen und damit einhergehend erhöhte Stresserscheinungen (sogenannte extraaurale Schäden). Gerade Kinder leiden aufgrund der noch nicht vollständigen körperlichen und geistigen Entwicklung und haben unter Lärmeinwirkung deutlich größere Probleme mit der Konzentrations- und Lernfähigkeit.

Wie auch bei Unterrichtsräumen unterscheidet die DIN 18041:2016 bei der Definition von Anforderungen zwischen Gruppenräumen in Kindergärten mit und ohne Inklusion. Da nicht davon ausgegangen werden kann, dass sich ausschließlich Kinder mit einwandfreiem Gehör und ohne Aufmerksamkeitsschwächen bzw. Kinder, deren Muttersprache deutsch ist in den Kindergärten aufhalten, sollten insbesondere Neubauten immer inklusiv geplant und ausgeführt werden.

Eingangsdaten für die raumakustische Prognose Raumgeometrie

raumgeometrie


■ Länge 8 m
■ Breite 6 m
■ Höhe 3 m
■ Volumen 144 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

■ Flurwand
 ■ Trennwände
 ■ Bodenbelag
 ■ Decke
 Leichtbauwand
 Linoleum
 Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 10 Schüler, ohne Absorber T = 1,92 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz T = 0,34 – 0,51 s	
Prognostizierte Nachhallzeit mit Absorber T = 0,45 s	
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 6 – 7 dB	

In Abhängigkeit der Einrichtung wie Teppiche, Vorhänge, offene Bücherregale, Stoffcouch usw. kann die vorhandene Nachhallzeit variieren.

Die Anforderung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt


Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Quadratlochung 12/25 Q	Konstruktionstiefe 200 mm	Vollflächig
Wandabsorber	Wandabsorber Adit	_	Ca. 1/3 der einer Wandfläche

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

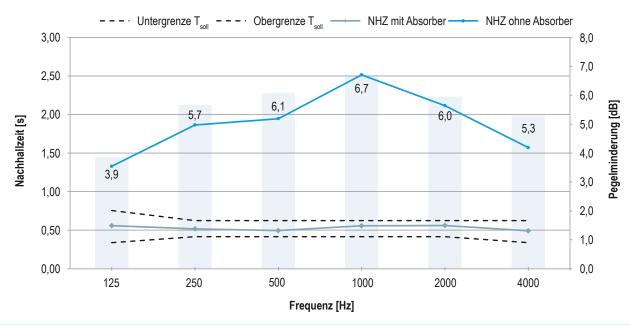
Absorber	Bewerteter Schallabsorptionsgrad α_{w}
Deckenabsorber	≥ 0,80
Wandabsorber	≥ 0,80

Kindergarten-Gruppenraum ohne Inklusion

Konzept für Kindergärten ohne Inklusion

Eingangsdaten für die raumakustische Prognose

Raumgeometrie


■ Länge 8 m ■ Breite 6 m ■ Höhe 3 m ■ Volumen 144 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

Flurwand
 Trennwände
 Bodenbelag
 Decke
 Leichtbauwand
 Linoleum
 Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 10 Schüler, ohne Absorber T = 1,92 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz T = 0,42 – 0,62 s	
Prognostizierte Nachhallzeit mit Absorber T = 0,53 s	
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 5 – 6 dB	

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Quadratlochung 12/25 Q	Konstruktionstiefe 200 mm	Vollflächig

Es kann eine bessere, raumakustische Qualität erreicht werden, wenn die Absorberflächen auf die Decken- und Wandflächen verteilt werden. z. B.:

- 2/3 der Deckenfläche akustisch wirksam, z. B. Cleaneo Akustik-Plattendecke 8/18 R mit Akustikvlies in Kombination mit
- 2x 10 m² Designpanel T3L1 an den Wänden

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,75

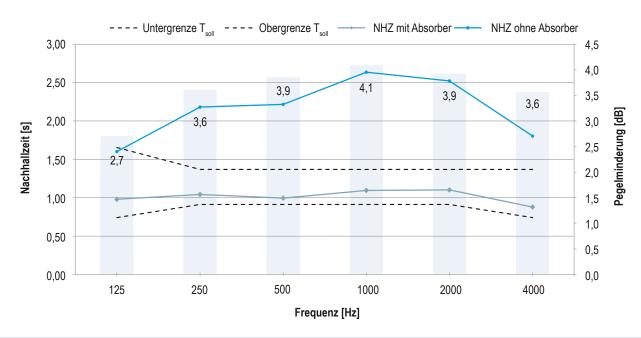
Musikraum mit aktivem Musizieren und Gesang

Konzept für Musikraum mit aktivem Musizieren und Gesang

Pauschale Aussagen zur richtigen Auslegung von Musikräumen unabhängig von den verwendeten Instrumenten oder der Art des Gesangs lassen sich kaum treffen. Laut E DIN 18041:2015 sorgen längere Nachhallzeiten in Unterrichtsräumen für jüngere Musikschüler z. B. bei Gesang oder Blockflöte für eine Erhöhung der Spielfreude. Dementgegen werden für Blas- oder Streichinstrumente sowie Schlagzeug kürzere Nachhallzeiten bevorzugt. Die folgende Auslegung beschränkt sich daher auf die Anforderungen einer Soll-Nachhallzeit analog der Raumgruppe A1 für Musikräume mit aktivem Musizieren und Gesang in Bildungseinrichtungen.

Eingangsdaten für die raumakustische Prognose Raumgeometrie

■ Länge 10 m
■ Breite 8 m
■ Höhe 3 m
■ Volumen 240 m³

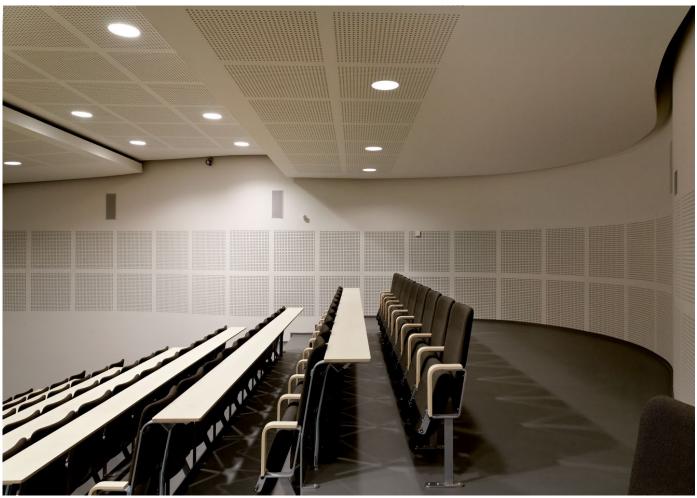

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

■ Flurwand Leichtbauwand
■ Trennwände Leichtbauwand
■ Bodenbelag Parkett

■ Decke Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 15 Musiker/Sänger, ohne Absorber T = 1,92 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz T = 0,91 – 1,37 s	
Prognostizierte Nachhallzeit mit Absorber T = 1,06 s	
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 3 – 4 dB	


Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Lochbild: Rundlochung 6/18 R	Konstruktionstiefe 200 mm	50 % der Deckenfläche
Wandabsorber	W112C.de Cleaneo Akustik-Wand Lochbild: Rundlochung 8/18 R	Wanddicke 132,5 mm	Flächenanteil Cleaneo Akustikplatten 50 %

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,45
Wandabsorber	≥ 0,75

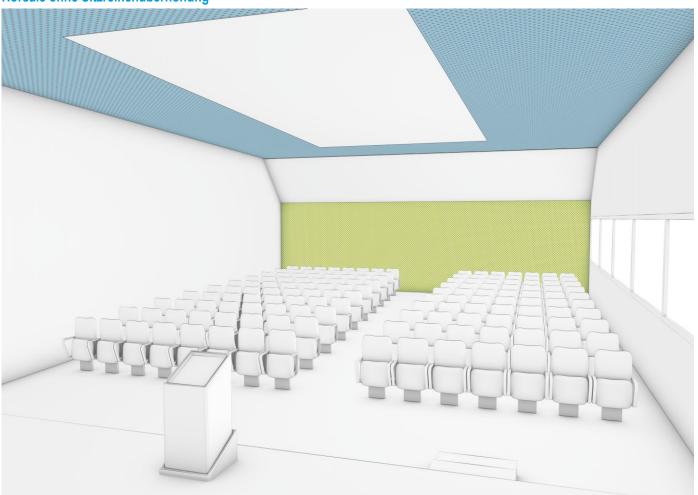
Hörsäle



Aufgrund der Raumgröße von typischen Hörsälen sind neben der Anforderung an die Soll-Nachhallzeit weitere Parameter zu berücksichtigen, um für eine gute Sprachverständlichkeit zu sorgen. Für Sprachdarbietungen ist darauf zu achten, dass eine Volumenkennzahl von 4 bis 6 m³/Platz eingehalten wird. Bei parallel zueinander stehenden Wandflächen ist eine Wandfläche zumindest teilweise schallabsorbierend auszuführen. Alternativ ist eine Belegung einer Wandfläche mit großformatigen Segmenten möglich, die für eine gezielte Schalllenkung eingesetzt werden.

Ist eine Schrägstellung der Wände zur Vermeidung störender Schallreflexionen vorgesehen, sollte die Schrägstellung min. 5° betragen.

Um den Direktschall des Sprechers möglichst gleichmäßig zu verteilen, können über dem Rednerpult großformatige, schallharte Deckensegel mit einem Neigungswinkel vorgesehen werden, der eine Schallweiterleitung in den hinteren Bereich des Raumes gewährleistet. Ab ca. 10 Sitzreihen ist zur besseren Hör- und Sichtbeziehung eine Sitzreihenüberhöhung sinnvoll. Die notwendige Sitzreihenüberhöhung in Abhängigkeit zur Entfernung der Zuhörer und der Podiumshöhe kann der folgenden Abbildung entnommen werden. Des Weiteren sind durch schallabsorbierende und/oder schalllenkende Maßnahmen Wegstreckendifferenzen ≥ 17 m zwischen der Schallquelle zu Empfänger und Schallquelle, Reflexion und Empfänger zu vermeiden.



Als zusätzliche Maßnahmen können insbesondere bei leisen Sprechern und / oder einer großen Anzahl an Zuhörern elektroakustische Beschallungsanlagen notwendig werden.

Hörsäle ohne Sitzreihenüberhöhung

Konzept für Hörsäle ohne Sitzreihenüberhöhung

Für eine ausreichende Hör- und Sichtbeziehung sollten Hörsäle ohne Sitzreihenüberhöhung maximal mit 10 Sitzreihen bestückt werden.

Aufgrund der Volumenkennzahl ergibt sich für den Raum eine Bestuhlung für 150 bis 225 Personen.

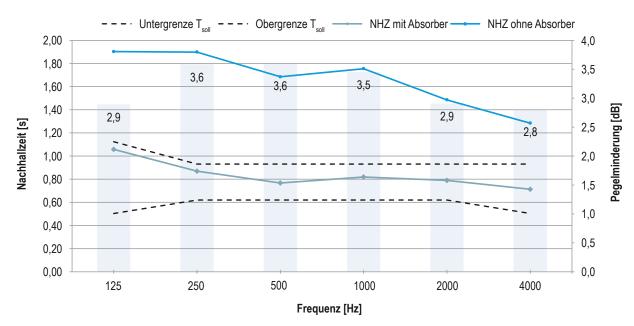
Des Weiteren ist über dem Rednerpodium eine abgeschrägte Decke oder Deckensegel mit einem Neigungswinkel zwischen 15° bis 25° vorzusehen um den Schall in den Zuhörerbereich zu lenken.

Zur Vermeidung störender Rückwandreflexionen ist die dem Sprecher gegenüber liegende Wandfläche akustisch wirksam zu gestalten.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

■ Länge 18 m
■ Breite 10 m
■ Höhe 5 m
■ Volumen 900 m³

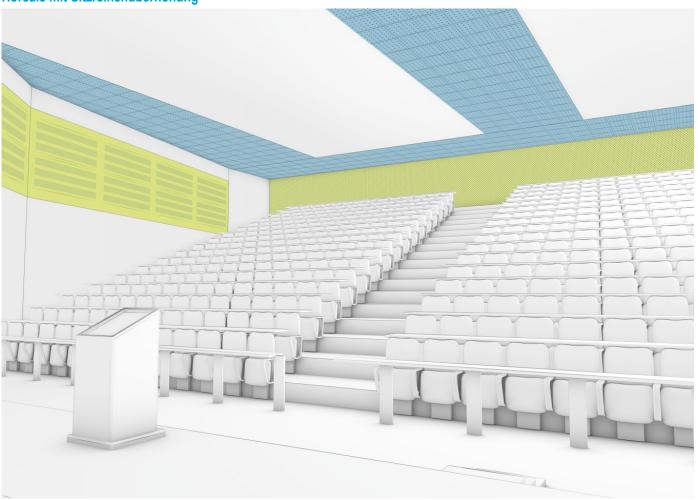

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

Trennwände LeichtbauwandBodenbelag Parkett

■ Decke Unterdecke mit Gipsplattenbeplankung (ungelocht)

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 120 (80 %) Personen, ohne Absorber T = 1,55 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 0.62 - 0.93 s
Prognostizierte Nachhallzeit mit Absorber	T = 0,81 s
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz	3 – 4 dB


Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Lochbild: Rundlochung 10/23 R	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	Wandbekleidung W623C.de Vorsatzschale Cleaneo Akustikplatten mit CD 60/27 Lochbild: Rundlochung 8/18 R	Flächenanteil Cleaneo Akustikplatten 100 % Konstruktionstiefe 112,5 mm	Rückwand vollflächig

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,60
Wandabsorber	≥ 0,70

Hörsäle mit Sitzreihenüberhöhung

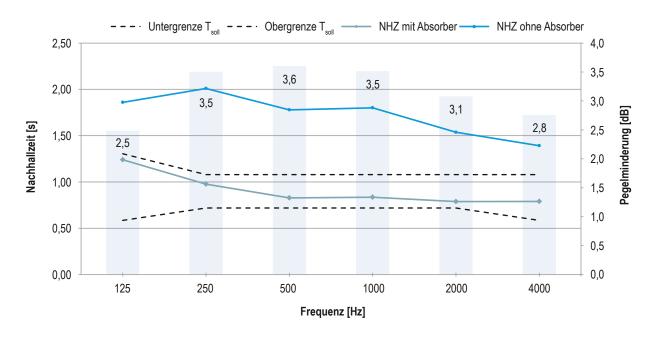
Konzept für Hörsäle mit Sitzreihenüberhöhung

Für eine ausreichende Hör- und Sichtbeziehung ist eine Sitzreihenüberhöhung vorgesehen.

Aufgrund der Volumenkennzahl ergibt sich für den Raum eine Bestuhlung für 365 bis 550 Personen.

Die Kubatur des Raumes ist so zu wählen, dass störende Reflexionen vermieden werden und möglichst viel Direktschall in den Zuhörerbereich gelenkt wird. Bei Räumen dieser Größenordnung und Anzahl von Personen ist eine elektroakustische Beschallungsanlage vorzusehen.

Eingangsdaten für die raumakustische Prognose Volumen


2200 m³

Verwendete Materialien

TrennwändeBodenbelagParkett

■ Decke Unterdecke mit Gipsplattenbeplankung (ungelocht)

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 290 (80 %) Personen, ohne Absorber T = 1,73 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 0.72 - 1.08 s
Prognostizierte Nachhallzeit mit Absorber	T = 0,86 s
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz	3 – 4 dB

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D147.de Cleaneo Akustik-Kassettendecke Contur Lochbild: Micro	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	W623D.de Cleaneo Akustik-Wandbekleidung Designpanel Lochbild: Tangent T3L1	Flächenanteil Designpanel 100 % Konstruktionstiefe 77,5 mm	Rückwand vollflächig
Wandabsorber	W623D.de Cleaneo Akustik-Wandbekleidung Designpanel Lochbild: Tangent T3L1	Flächenanteil Designpanel 33 %, Konstruktionstiefe 77,5 mm	1/3 der der Fläche der Seitenwände

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,65
Wandabsorber	≥ 0,70

Gemeinde- oder Versammlungsraum

Konzept für Gemeinde- oder Versammlungsraum

Gemeinde- und Versammlungsräume dienen häufig mehreren Nutzungsarten. So zum Beispiel für Vereinssitzungen- und feiern, Musikproben und Musikaufführungen oder als Seminar- und Vortragsraum. Entsprechend ist eine Auslegung der raumakustischen Qualität gewichtet auf einen Hauptverwendungszweck (sprachliche oder musikalische Darbietungen) zu wählen. Alternativ kann mit mobilen Absorberelementen gearbeitet werden, die optimal auf nahezu jede Verwendung des Raumes abgestimmt werden können. In der Praxis zeigt sich jedoch, dass solche Elemente in derartigen Räumen meist keine Akzeptanz bzw. Anwendung finden und mobile Absorberelemente lediglich bei der theoretischen Prognose funktionieren. Entsprechend wird das folgende Musterausbaukonzept raumakustisch so ausgelegt, dass sprachliche Darbietungen einzelner Sprecher eine hohe Sprachverständlichkeit erzielen sowie gute Bedingungen für musikalische Proben möglich sind. Als Kompromisslösung muss jedoch akzeptiert werden, dass musikalische Darbietungen in der Regel als zu transparent wahrgenommen werden. Das heißt, die Nachhallzeit im Raum ist für die meisten instrumentalen und gesanglichen Aufführungen zu kurz.

Eingangsdaten für die raumakustische Prognose

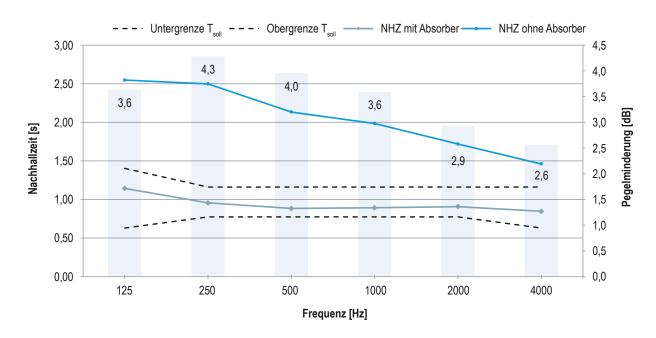
Raumgeometrie

■ Länge 20 m ■ Breite 13 m ■ Höhe 3,8 m ■ Volumen 988 m³

Inklusive einer Bühne an der Stirnseite.

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband Stirnwand 1 Verputztes Mauerwerk mit Holzbekleidung


■ Stirnwand 2 Verputztes Mauerwerk

Vorhang zugezogen im Bühnenbereich

■ Flurwand Leichtbauwand ■ Bodenbelag Parkett

Decke Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 50 Personen, ohne Absorber T = 2,06 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 0,77 - 1,16 s
Prognostizierte Nachhallzeit mit Absorber	T = 0,91 s
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz	3 – 4 dB

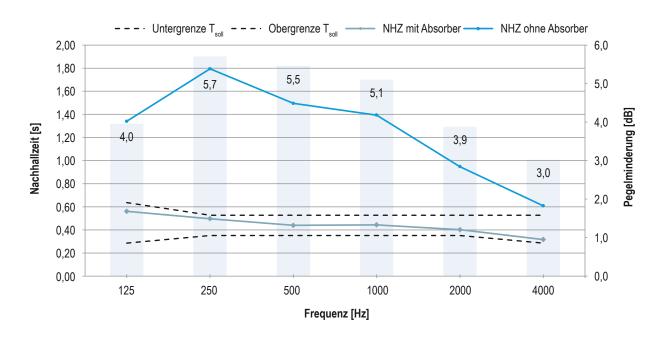
Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Slotline B6	Konstruktionstiefe 200 mm	50 % der Deckenfläche
Wandabsorber	W629C.de Wandbekleidung Vorsatzschale Cleaneo Akustikplatten mit CW-Doppelprofilen Lochbild: Quadratlochung 12/25 Q	Flächenanteil Cleaneo Akustikplatten 50 %, Konstruktionstiefe 112,5 mm	50 % der Fläche der der Bühne ge- genüber liegenden Wand

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,65
Wandabsorber	≥ 0,70

Tagungsräume mit Inklusion

In Tagungs-, Konferenz- und Besprechungsräumen ist ein Aufenthalt von mehreren Stunden nicht selten. Häufig kommt es zu Beschwerden wie Erschöpfung, Müdigkeit und Verlust der Aufnahmefähigkeit. Zum einen hat dies sicherlich mit den Gesprächsinhalten mit weitreichenden Entscheidungen zu tun. Jedoch werden diese Symptome durch eine schlechte Raumakustik zusätzlich gefördert. Ohne akustische Maßnahmen kommt es in geschlossenen Räumen durch die Lautstärke der Sprecher und einer hohen Anzahl von Schallreflexionen zu einem schnellen Aufschaukeln des Lärmpegels. Dies führt direkt zu einer enormen körperlichen Belastung und zusätzlichen Anstrengung aber auch zur Minderung der Wort-, Satz- und Silbenverständlichkeit, was dem menschlichen Gehirn zusätzliche Leistungsfähigkeit abverlangt, um dem Gesprochenen folgen zu können. Dieser Effekt verstärkt sich zusätzlich, wenn die Kommunikation nicht in der Muttersprache geführt wird und/oder aufgrund gesundheitlicher Einschränkungen oder dem Alter eine Hörschwäche der Teilnehmer vorliegt.


Eingangsdaten für die raumakustische Prognose Raumgeometrie

■ Länge 12,5 m
■ Breite 4,5 m
■ Höhe 3 m
■ Volumen 169 m³

Verwendete Materialien

Außenwand Glasfassade
 Flurwand Leichtbauwand
 Trennwände Leichtbauwand
 Bodenbelag Nadelfilz
 Decke Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 6 Personen, ohne Absorber T = 1,26 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 0.35 - 0.53 s
Prognostizierte Nachhallzeit mit Absorber T = 0,45 s	
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 4 – 5 dB	

In Abhängigkeit der Einrichtung wie Teppiche, Vorhänge, offene Bücherregale, Stoffcouch usw. kann die vorhandene Nachhallzeit variieren.

Die Anforderung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Quadratlochung 8/18 Q	Konstruktionstiefe 200 mm	Vollflächig
Wandabsorber	Wandabsorber Adit	_	1/3 der Fläche einer Stirnwand

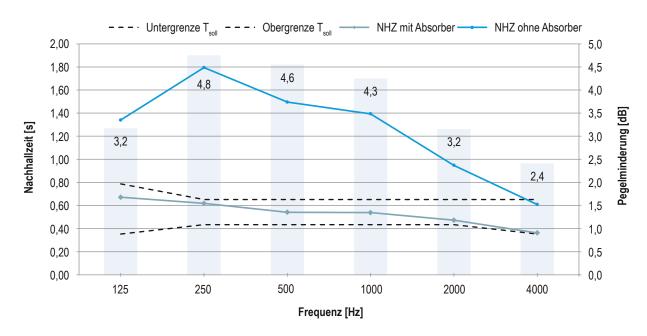
Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad α_{w}
Deckenabsorber	≥ 0,75
Wandabsorber	≥ 0,80

Tagungsräume ohne Inklusion

Konzept für Besprechungsräume ohne Inklusion

Eingangsdaten für die raumakustische Prognose Raumgeometrie


■ Länge 12,5 m

■ Breite 4,5 m
 ■ Höhe 3 m
 ■ Volumen 169 m³

Verwendete Materialien

Außenwand Glasfassade
 Flurwand Leichtbauwand
 Trennwände Leichtbauwand
 Bodenbelag Nadelfilz
 Decke Stahlbetondecke

Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 6 Personen, ohne Absorber T = 1,26 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz $T = 0.43 - 0.65 s$	
Prognostizierte Nachhallzeit mit Absorber T = 0,54 s	
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz 3 – 4 dB	

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Quadratlochung 8/18 Q	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	Wandabsorber Adit	_	1/3 der Fläche einer Stirnwand

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,75
Wandabsorber	≥ 0,80

Sporthallen

Konzept für Sporthallen

Beim Sport muss mit erhöhten Lärmpegeln gerechnet werden. Sei es durch das Spielen mit dem Ball, der lautstarken Kommunikation untereinander, den Anfeuerungsrufen oder einer musikalischen Untermalung bei rhythmischen Sportarten. In der Freizeit bleibt es jedem selbst überlassen, ob man sich dieser Geräuschbelastung aussetzen möchte. Beim Schulsport hingegen können sich weder die Lehrkräfte, noch die Schüler diesen Einflüssen entziehen. Insbesondere bei mehrzügigen, d. h. bei parallelem Schulsport mehrerer Klassen, kann kaum Einfluss auf den vorherrschenden Lärmpegel genommen werden. Lärmpegel von 80 bis 90 dB(A) sind in Sport- und Schwimmhallen keine Seltenheit.

Auch für Sport- und Schwimmhallen werden Anforderungen an eine einzuhaltende Soll-Nachhallzeit gestellt. Im Vergleich zu den vorab beschriebenen Räumen beschränkt sich der Toleranzbereich jedoch lediglich auf die Frequenzen 250 Hz bis 2000 Hz mit einer Genauigkeit von ± 20%. Die schallabsorbierenden Materialien sind in der Sporthalle so zu verteilen, dass auch bei herunter gelassenen Trennvorhängen die Anforderungen an die Soll-Nachhallzeit, insbesondere im Mittelteil eingehalten werden. Bei der Ergreifung von Maßnahmen sind diese nach DIN 18032-1 ballwurfsicher auszuführen.

Eingangsdaten für die raumakustische Prognose Raumgeometrie

■ Länge 45 m
■ Breite 27 m
■ Höhe 7 m
■ Volumen 8505 m³

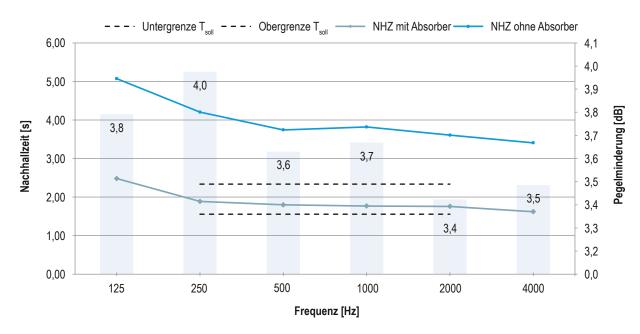
Verwendete Materialien

■ Außenwand Bis 2,5 m Höhe Prallwand,

darüber Ziegelmauerwerk mit Profilbauglas

■ Flurwand Bis 2,5 m Höhe Prallwand,

darüber Ziegelmauerwerk mit Profilbauglas


darüber Ziegelmauerwerk mit Profilbauglas

■ Trennwände Bis 2,5 m Höhe Prallwand,

■ Bodenbelag Linoleum auf Schwingboden

■ Decke Stahltrapezblechdecke mit Unterzügen

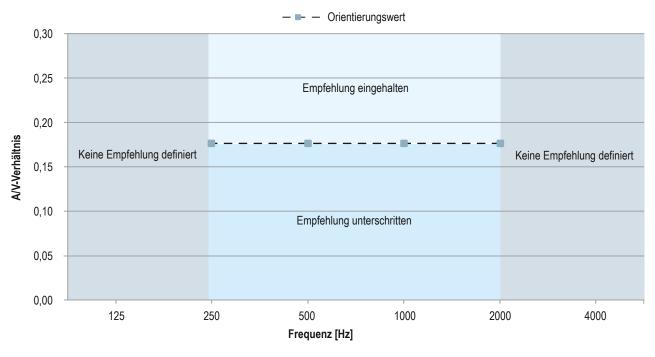
Raumakustische Daten	
Prognostizierte Nachhallzeit inkl. 20 Schüler, ohne Absorber T = 3,98 s	
Soll-Nachhallzeit zwischen 250 Hz bis 2000 Hz	T = 1,56 – 2,34 s
Prognostizierte Nachhallzeit mit Absorber	T = 1,80 s
Physikalische Lärmpegelminderung gemittelt zwischen 125 Hz bis 4000 Hz	3 – 4 dB

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Rundlochung 8/18 R	Konstruktionstiefe 400 mm	50 % der Deckenfläche
Wandabsorber	W623D.de Cleaneo Complete Wandbekleidung Lochbild: Globe	Flächenanteil Cleaneo Complete: 2 m hoher Streifen ab OK Prallwand, Konstruktionstiefe 77,5 mm	2 m hoher, umlaufender Streifen an den Stirnwänden und der Flurwand

Es sei darauf hingewiesen, dass in diesem Teil nur die Raumgrundbedämpfung zur Bekämpfung hoher Lärmpegel betrachtet wird. Ein weiteres, ausschlaggebendes Kriterium zur Minderung der Lärmpegel bei mehrzügigen Sportunterricht ist die Schalldämmung der Trennvorhänge, die in diversen Untersuchungen der Fraunhofer Gesellschaft – Institut für Bauphysik aufgrund der Ausführung mit Schlupföffnungen, Lücken zwischen den Begrenzungsflächen sowie Undichtigkeiten im Bereich der Anschlussstelle an Tribünen oft zu wünschen übrig lässt.

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,60
Wandabsorber	≥ 0,70


Grundsätzliches

Entgegen einer ausreichenden Versorgung aller Anwesenden mit Schallenergie, kommt es bei den Räumen der Gruppe B auf eine Minderung des Lärmpegels und Reduzierung der Halligkeit an, sodass eine gute Sprachverständlichkeit lediglich über eine geringe Entfernung erzielt wird. Eine Schallweiterleitung auf längere Distanz soll bewusst vermieden werden. Als Orientierungswert wird in DIN 18041:2016 ein A/V-Verhältnis (äquivalente Schallabsorptionsfläche zu Raumvolumen) über den Frequenzbereich zwischen 250 bis 2000 Hz angegeben. Je höher der Zahlenwert dieses Verhältnisses ist, desto mehr Schallabsorptionsfläche befindet sich im Raum und umso stärker ist der Raum akustisch bedämpft. Das heißt, es findet eine stärkere Reduktion des Lärmpegels statt.

Im Gegensatz zu den Anforderungen für Räume der Gruppe A wird kein Toleranzbereich vorgegeben. Vielmehr kommt es bei der Auslegung der Räume der Gruppe B darauf an, möglichst nahe an den frequenzabhängigen Orientierungswert heranzukommen. Weiterhin wird die Schallabsorption durch Personen bei der Prognose nicht berücksichtigt.

Da das Ziel dieser raumakustischen Auslegung darin besteht, sämtliche Störgeräusche zu mindern und eine Schallausbreitung im Raum zu reduzieren, findet keine separate Berücksichtigung erhöhter Anforderung hinsichtlich einer inklusiven Gestaltung statt. Die Einhaltung der getroffenen Empfehlung wirkt sich jedoch auch auf Menschen mit eingeschränkten Hörfähigkeiten, Aufmerksamkeitsstörungen oder Kommunikation in einer Fremdsprache auf kurze Distanz positiv aus.

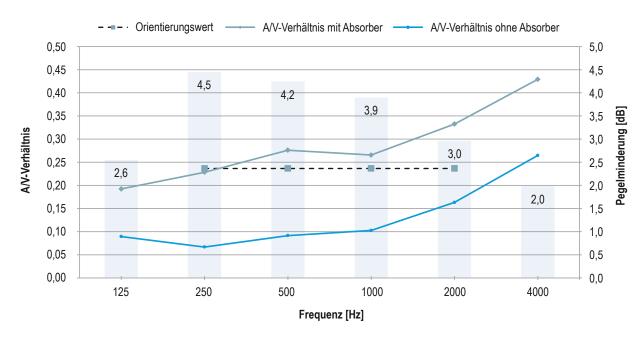
Beispielhafte Darstellung eines Orientierungswertes zwischen 250 Hz bis 2000 Hz an das A/V-Verhältnis

Einpersonen- und Zweipersonenbüros

Konzept für Ein- und Zweipersonenbüros

Da auch in Ein- und Zweipersonenbüros Kommunikationen mit Kollegen oder Kunden, persönlich in einer kleinen Besprechung oder am Telefon stattfinden und zusätzlich Lärm von außen in das Büro eindringt, sollten die Orientierungswerte zur Auslegung der raumakustischen Qualität eingehalten werden. Häufig werden Einpersonenbüros durch Umnutzungen oder Flächenoptimierung zu Zweipersonenbüros. Entsprechend werden auch an solche Bürotypen identische Empfehlungen gestellt.

Eingangsdaten für die raumakustische Prognose Raumgeometrie


■ Länge 5,70 m
■ Breite 5,10 m
■ Höhe 2,80 m
■ Volumen 81,4 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

Flurwand Leichtbauwand
 Trennwände Leichtbauwand
 Bodenbelag Nadelfilz
 Decke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber A/V = 0,10 1/m	
Empfohlenes A/V-Verhältnis	A/V = 0,24 1/m
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,28 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz 3 – 4 dB	

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	Cleaneo Up	Format 1000 mm x 2000 mm, Konstruktionstiefe 200 mm	4 Stück
Wandabsorber	W112C.de Cleaneo Akustik-Wand Lochbild: Quadratlochung 12/25 Q	Wanddicke 132,5 mm	Flächenanteil Cleaneo Akustikplatten 50 %

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,65 bei halber Deckenflächenbelegung
Wandabsorber	≥ 0,75

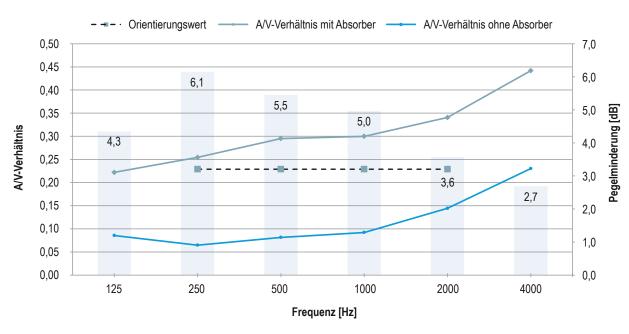
Gruppen- und Mehrpersonenbüros

Konzept für Gruppen- und Mehrpersonenbüros

Insbesondere bei der Auslegung von Mehrpersonen- und Großraumbüros ist es oftmals nicht ausreichend, nur die Raumgrundbedämpfung zu berücksichtigen. Bereits während der Planungsphase sollte darauf geachtet werden, dass differenzierte Funktionsgruppen nicht auf eine gemeinsame Fläche gesetzt werden. Sollte sich das nicht vermeiden lassen, sind wirksame, schallschirmende Maßnahmen zu ergreifen, um eine konzentrierte und leistungsgerechte Arbeitswelt sicher zu stellen. In Teambüros ist dafür zu sorgen, dass die Lärmpegel so gering wie möglich gehalten werden. Das beginnt bereits bei der Anschaffung notwendiger Büroausrüstungen wie Drucker oder Lüfter für die PC sowie bei der Konzeptionierung von gebäudetechnischen Anlagen wie Klimatisierung und Lüftung. Eine gute Raumakustik sorgt zusätzlich zur Minderung sämtlicher Geräusche im Raum und reduziert somit die Sprachlautstärke der Mitarbeiter. Weitere Empfehlungen für Büroräume behandelt die VDI 2569.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

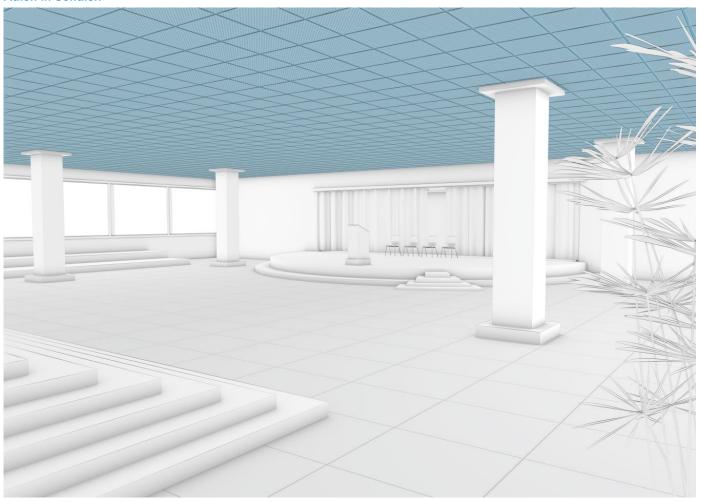

■ Länge 15,0 m
■ Breite 5,5 m
■ Höhe 3,0 m
■ Volumen 247,5 m³

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterfront

Flurwand
 Trennwände
 Bodenbelag
 Decke
 Leichtbauwand
 Leichtbauwand
 Nadelfilz
 Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber A/V = 0,10 1/m	
Empfohlenes A/V-Verhältnis	A/V = 0,23 1/m
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,30 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz 4 – 6 dB	


Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 Aoder gleichwertig) Lochbild: Quadratlochung 8/18 Q	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	Adit	_	1/3 der Flächen der Stirnwände

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,70
Wandabsorber	≥ 0,80

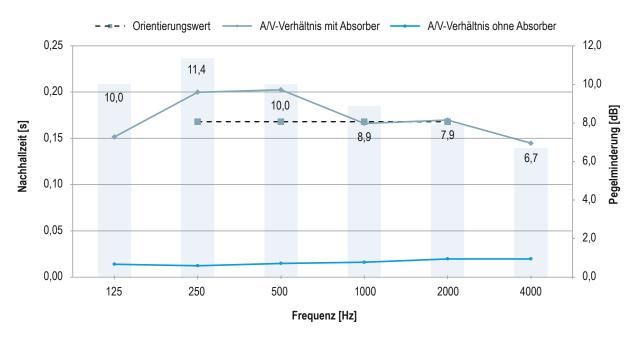
Aulen in Schulen

Konzept für Aulen in Schulen

Aulen in Schulen dienen häufig mehreren Nutzungen. Als Aufenthaltsort für die Schüler bei Pausen, für Musikaufführungen sowie Sprachdarbietungen bei Schulveranstaltungen. Entsprechend sollte die Raumakustik so ausgelegt werden, dass eine Kommunikation sowohl untereinander in mehreren Gruppen als auch mit lediglich einem Vortragenden auf der Bühne sowie musikalische Darbietungen möglich sind. Da der Hauptverwendungszweck jedoch dem Aufenthalt von Schülern dient, werden Aulen an dieser Stelle wie Räume zum längerfristigen Verweilen analog Verkehrsflächen in Schulen und Pausenräume behandelt. Sollte die Verwendung der Aula primär auf Aufführungen ausgelegt werden, ist eine Herangehensweise analog der bei Hörsälen oder Gemeinderäume vorzusehen.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

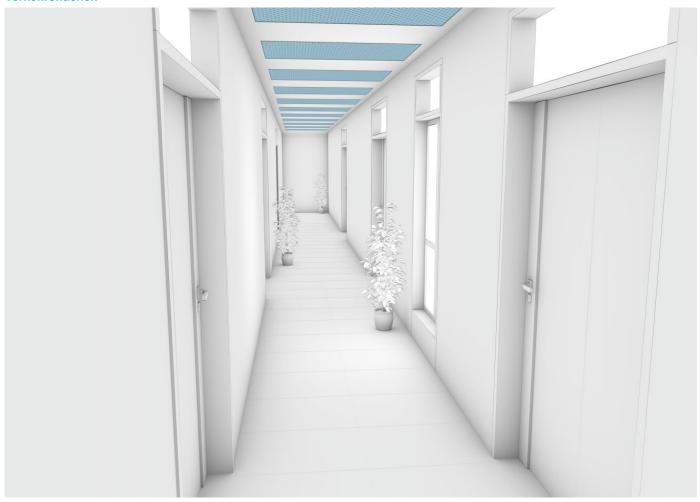

■ Länge 20,0 m
■ Breite 24,0 m
■ Höhe 4,0 m
■ Volumen 1920 m³

Verwendete Materialien

■ Wände Stahlbetonwände mit Verglasungselementen

Bodenbelag LinoleumDecke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz		
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,02 1/m	
Empfohlenes A/V-Verhältnis	A/V = 0,17 1/m	
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,18 1/m	
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	9 – 10 dB	


Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D145.de Cleaneo Akustik-Kassettendecke Belgravia Mit Mineralwollauflage 30 mm (Knauf Insulation Akus- tik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Globe	Konstruktionstiefe 200 mm	Vollflächig

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,60(L)

Verkehrsflächen

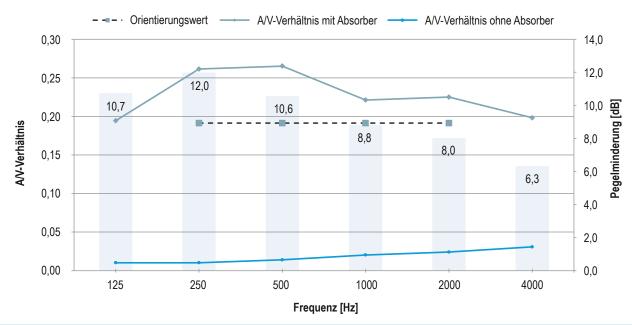
Konzept für Verkehrsflächen

Verkehrsflächen werden in vielen Einrichtungen auch zum kommunikativen Austausch genutzt. So entstehen in akustisch unbehandelten Räumen relativ hohe Geräuschpegel, die sich im gesamten Stockwerk ausbreiten und über die Türen in die angrenzenden Räume geleitet werden. Daher empfiehlt die E DIN 18041 sowohl im Mehrfamilien-Wohnungsbau bei den Zugangsfluren, als auch in öffentlichen Gebäuden wie Krankenhäuser, Schulen, Kindergärten usw., raumakustische Maßnahmen für Verkehrsflächen.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

■ Länge 20,0 m
■ Breite 1,6 m
■ Höhe 2,8 m


Verwendete Materialien

■ Wände Verputztes Mauerwerk

■ Bodenbelag Fliesen

■ Decke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0.02 1/m
Empfohlenes A/V-Verhältnis	A/V = 0.19 1/m
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,24 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	9 – 10 dB

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D146.de Akustik-Kassettendecke Plaza Mit Mineralwollauflage 30 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Globe	Konstruktionstiefe 200 mm	1/3 der Deckenfläche

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,60(L)

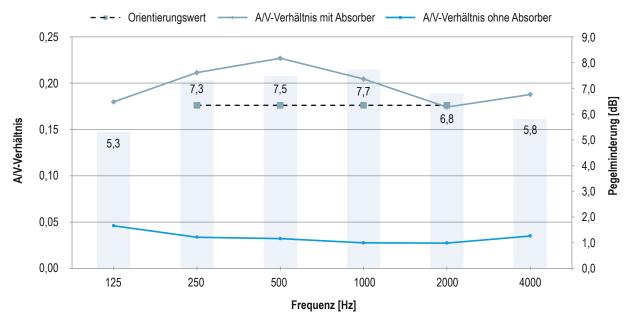
Kantinen

Konzept für Kantinen

Kantinen sollten nicht nur zur schnellen Nahrungsaufnahme genutzt werden, sondern auch zum Kommunikationsaustausch mit Kunden und Kollegen sowie zum Kraftschöpfen und Ausruhen. In häufig vorgefundenen Kantinen ist es nicht möglich, sich ohne das Anheben der Stimmlautstärke zu verständigen. Der permanent hohe Lärmpegel sorgt für eine zusätzliche Stressbelastung und lässt keine entspannte Kommunikation zu.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie


■ Länge 16,5 m ■ Breite 14,0 m ■ Höhe 3,5 m

Verwendete Materialien

■ Außenwand Verputztes Mauerwerk mit Fensterband

Innenwände LeichtbauwandBodenbelag ParkettDecke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,03 1/m
Empfohlenes A/V-Verhältnis	A/V = 0,18 1/m
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,20 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	7 – 8 dB

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Streulochung PLUS 10/16/22 R	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	W623D.de Akustik-Wandbekleidung Designpanel Lochbild: Tangent T3L1	Konstruktionstiefe 65 mm	1/3 der Flächen der Innenwände

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_w$
Deckenabsorber	≥ 0,55(L)
Wandabsorber	≥ 0,70

Empfangshallen mit Arbeitsplatz

Konzept für Empfangshallen und Foyers

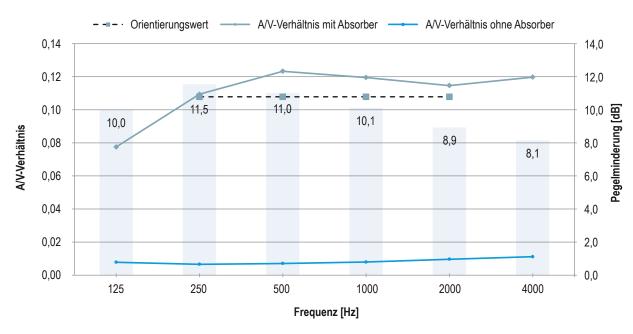
Empfangshallen und Foyers sind aufgrund ihrer Abmessungen und der Verwendung überwiegend schallharter Materialien in aller Regel äußerst hallig. Entsprechend führen Schallreflexionen an den Begrenzungsflächen zu starker Echoerscheinung und das gesprochene Wort wird undeutlich. Dies ist besonders dann störend, wenn sich in der Empfangshalle ein Tresen mit permanentem Arbeitsplatz befindet. Gespräche am Empfang, sowohl persönlich, als auch am Telefon sind im gesamten Raum zu hören, was selbst ein Gespräch mit vertraulichem Inhalt nahezu unmöglich macht. Aber auch der Empfang einer Besuchergruppe und die damit verbundene Kommunikation mit ggf. mehreren Sprechem wird aufgrund der schlechten Sprachverständlichkeit und des hohen Lärmpegels problematisch.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

■ Länge 16 m
■ Breite 18 m
■ Höhe 9,0 m

Verwendete Materialien


■ Außenwand Glasfassade integriert in verputztes Mauerwerk

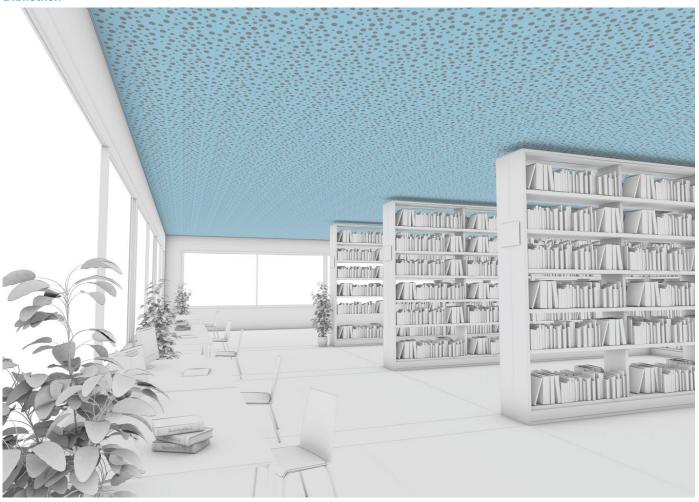
■ Innenwände Unverputztes Mauerwerk

■ Bodenbelag Fliesen

■ Decke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,01 1/m
Empfohlenes A/V-Verhältnis	A/V = 0,11 1/m
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,12 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	10 – 11 dB

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Rundlochung 10/23 R	Konstruktionstiefe 200 mm	2/3 der Deckenfläche
Wandabsorber	W623D.de Akustik-Wandbekleidung Designpanel Lochbild: Tangent T3L1	Konstruktionstiefe 65 mm	50 % der Flächen der Innenwände


Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\alpha_{\rm w}$
Deckenabsorber	≥ 0,65
Wandabsorber	≥ 0,70

Räume der Gruppe B

Bibliothek

Konzept für Bibliotheken

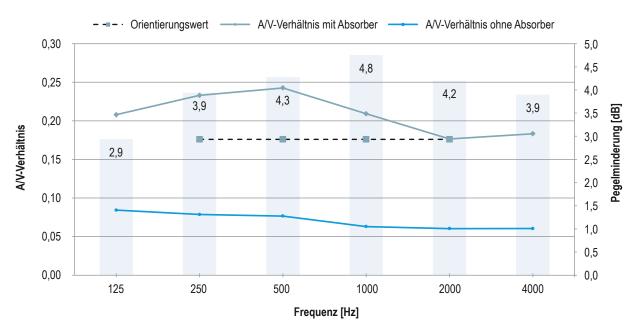
Bibliotheken dienen nicht nur dem Verleih, sondern häufig auch dem Studium von Büchern. Entsprechend hoch sind die Anforderungen an die Konzentrationsfähigkeit der Nutzer von Bibliotheken. Dies wiederum bedarf einer möglichst lärmarmen Umgebung, was den Einsatz von schallabsorbierenden Materialien notwendig macht. Ein großer Vorteil solcher Räumlichkeiten sind die mit Büchern, Ordnern und Zeitschriften gefüllten, offenen Regale, die bereits über gewisse schallabsorbierende Eigenschaften verfügen. Es müssen umso mehr Schallabsorber vorgesehen werden, je spärlicher der Raum gestaltet ist. In Rückzugszonen, die lediglich mit Tischen und Stühlen ausgestattet sind, müssen mehr Maßnahmen ergriffen werden im Vergleich zu den Bereichen, die mit Bücherregalen bestückt sind.

Da opake Begrenzungsflächen überwiegend mit Bücherregalen belegt sind, scheidet häufig der Einsatz von Wandabsorber aus. Aufgrund der schallabsorbierenden Eigenschafften von mit Büchern gefüllten Regalen ist dies auch nicht zwingend erforderlich.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie

■ Länge 22 m
■ Breite 12 m
■ Höhe 3,5 m


Verwendete Materialien

■ Außenwand Zwei verputzte Massivwände mit Fensterband

Innenwände LeichtbauwandBodenbelag Parkett

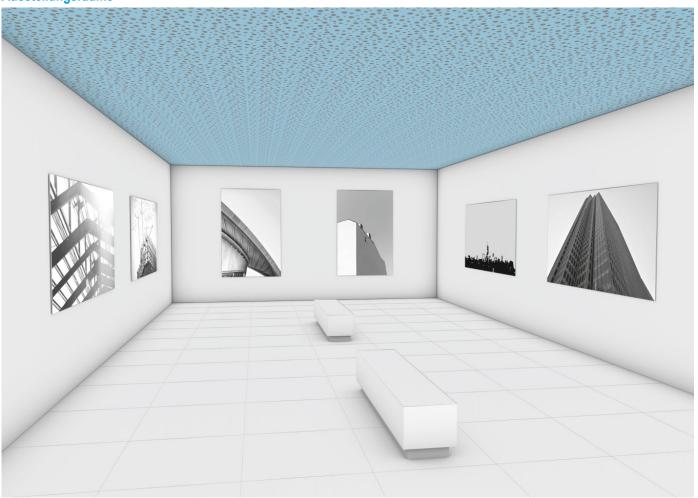
■ Decke Unterdecke mit Gipsplattenbeplankung (ungelocht)

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz		
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,07 1/m	
Empfohlenes A/V-Verhältnis	A/V = 0,18 1/m	
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,22 1/m	
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	4 – 5 dB	

Die Empfehlung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Streulochung PLUS 10/16/22 R	Konstruktionstiefe 200 mm	Vollflächig

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden


Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,55(L)

Eine Produktübersicht befindet sich in der Technischen Broschüre Raumakustik mit Knauf – Daten für die Planung.

Räume der Gruppe B

Ausstellungsräume

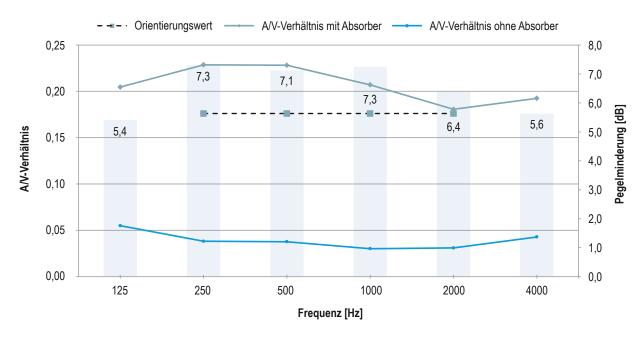
Konzept für Ausstellungsräume

In der Norm wird zwischen Ausstellungsräume mit und ohne Interaktivität unterschieden. Als Interaktivität werden multimediale Wiedergaben, Klang- und Videokunst genannt. Ohne Interaktivität sind die Empfehlungen an die raumakustische Qualität geringer. Jedoch kann im Vorhinein kaum ausgeschlossen werden, dass in einem Ausstellungsraum keine solche Aktivität stattfindet. Um die Raumnutzung möglichst offen zu halten und somit dem Künstler und Besucher eine für die entsprechende Kunstform möglichst gut Umgebung bereit zu stellen, wird im folgenden Musterbeispiel ein Ausstellungsraum mit Interaktivität geplant.

In Ausstellungsräumen werden meist die Boden- und Wandflächen zum Präsentieren der Exponate benötigt. Aus diesem Grund beschränken sich die akustischen Maßnahmen auf die Deckenfläche.

Eingangsdaten für die raumakustische Prognose

Raumgeometrie


■ Länge 15 m ■ Breite 7 m 3.5 m ■ Höhe

Verwendete Materialien

■ Außenwände Betonwand ■ Innenwände Leichtbauwand ■ Bodenbelag Parkett

■ Decke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz		
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,04 1/m	
Empfohlenes A/V-Verhältnis	A/V = 0,18 1/m	
Prognostiziertes A/V-Verhältnis mit Absorber	A/V = 0,21 1/m	
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	7 – 8 dB	

Die Empfehlung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Streulochung PLUS 10/16/22 R	Konstruktionstiefe 200 mm	Vollflächig

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,65(L)

Eine Produktübersicht befindet sich in der Technischen Broschüre Raumakustik mit Knauf – Daten für die Planung.

Räume der Gruppe B

Restaurants

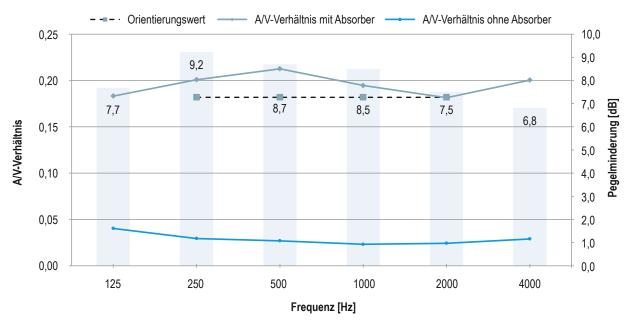
Konzept für Restaurants

In Restaurants wird häufig viel Wert auf das äußere Erscheinungsbild gelegt. Die Räumlichkeiten sollen ansprechend wirken und zum Verweilen einladen. Dafür werden Raum- und Farbkonzepte entworfen, um es dem Gast so gemütlich wie möglich zu machen. Was dabei jedoch oft vernachlässigt wird, ist neben dem Speisen der zweite Hauptverwendungszweck. Der kommunikative Austausch zu zweit oder in größeren Gruppen. Nicht selten lässt die raumakustische Qualität in Restaurants jedoch keine ungestörten Gespräche zu, weil der Grundgeräuschpegel so hoch ist, dass laut gesprochen werden muss, um sich verständlich zu machen, was wiederum zur Erhöhung des Grundgeräuschpegels führt. Ziel eines Raumakustikkonzepts sollte die Schaffung einer entspannten Umgebung sein, mit der Möglichkeit, sich in angemessener Lautstärke zu unterhalten.

Zur Dimensionierung der raumakustischen Maßnahmen werden die Orientierungswerte der Raumgruppe B3 "Räume zum längerfristigen Verweilen" herangezogen.

Eingangsdaten für die raumakustische Prognose Raumgeometrie

■ Länge 14 m ■ Breite 13 m ■ Höhe 3,2 m


Verwendete Materialien

■ Außenwände Verputzes Mauerwerk mit Fensterband

Innenwände LeichtbauwandBodenbelag Fliesen

■ Decke Stahlbetondecke

A/V-Verhältnis zwischen 250 Hz bis 2000 Hz	
Prognostiziertes A/V-Verhältnis ohne Absorber	A/V = 0,03 1/m
Empfohlenes A/V-Verhältnis	A/V = 0,18 1/m
Prognostiziertes A/V-Verhältnis	A/V = 0,20 1/m
Physikalische Lärmpegelminderung gemittelt zwischen 250 Hz bis 2000 Hz	8 – 9 dB

Die Empfehlung wird durch den Einsatz folgender Systeme bzw. Produkte erfüllt

Akustische Maßnahme	System / Produkt	Konstruktive Angaben	Raumakustisch wirksame Belegung
Deckenabsorber	D127.de Cleaneo Akustik-Plattendecke Mit Mineralwollauflage 20 mm (Knauf Insulation Akustik-Dämmplatte TP 120 A oder gleichwertig) Lochbild: Blocklochung B6 mit Rundlochung 8/18 R	Konstruktionstiefe 200 mm	Vollflächig

Alternativ zu den vorgeschlagenen Systemen bzw. Produkten können Absorber mit folgenden Eigenschaften verwendet werden

Absorber	Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_{w}$
Deckenabsorber	≥ 0,60

Eine Produktübersicht befindet sich in der Technischen Broschüre Raumakustik mit Knauf – Daten für die Planung.

Referenzen

Evangelischer Kindergarten St. Nikolaus Firmenzentrale Knauf Gips KG Stadtbibliothek Hanau

Gruppenraum

Anforderung

- Raumgruppe A4 Gruppenraum in Kindergärten
- Erhöhte Anforderungen mit Inklusion

Hinweis

Zusätzliche prognostizierter Besetzungszustand von 80 % mit Kindern, nach DIN 18041

Raumakustische Maßnahme

Vollflächige Belegung der Decke mit D127.de Cleaneo Akustik-Plattendecke Lochbild: Gerade Rundlochung 8/18 R

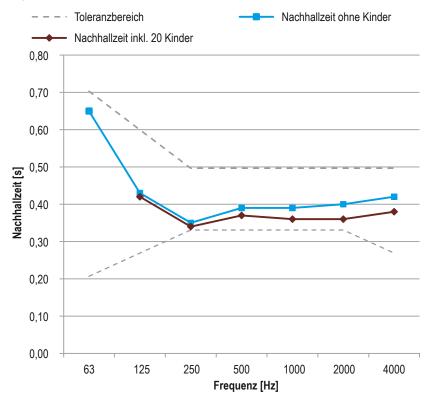
Nachhallzeitmessung nach DIN EN ISO 3382 Soll-Nachhallzeit nach DIN 18041:2016

Beschreibung des Raumes

Fußboden Linoleum

Decke Cleaneo Akustik-Plattendecke

Lochbild 8/18 R Lochanteil 15,5 % Konstruktionstiefe 65 mm Mit Mineralwollauflage


Wände Holzvertäfelung

Einrichtung Tische und Stühle für 25 Kinder, 3 Teppiche, Bücher- und Spieleregale

Besetzungszustand des Raumes

Gemessen wurde ohne Anwesenheit von Personen

Diagramm

|--|

Datum der Messung 13.07.2015 Messort Kindergarten

Raumbezeichnung Gruppenraum im Kindergarten

Grundfläche $50,7 \text{ m}^2$ Volumen 135 m^3

Frequenz f	Gemessene Nachhallzeit ohne Kinder	Nachhallzeit mit Kindern
Hz	s	s
63	0,65	-
125	0,43	0,42
250	0,35	0,34
500	0,39	0,37
1000	0,39	0,36
2000	0,40	0,36
4000	0,42	0,38

Mittlere Nachhallzeit zwischen 125 Hz bis 4000 Hz			
Ohne Kinder	T _{m,ohne Kinder} =	0,40 s	
Mit Kinder	T _{m mit Kinder} =	0,37 s	

Flur

Anforderung

Raumgruppe B3 Verkehrsflächen in Schulen und Kindertagesstätten

Raumakustische Maßnahme

Vollflächige Belegung der Decke mit D127.de Cleaneo Akustik-Plattendecke Lochbild: Gerade Rundlochung 8/18 R

Nachhallzeitmessung nach DIN EN ISO 3382 Soll-Nachhallzeit nach DIN 18041:2016

Beschreibung des Raumes

Fußboden Linoleum

Decke Cleaneo Akustik-Plattendecke

Lochbild 8/18 R Lochanteil 15,5 % Konstruktionstiefe 65 mm Mit Mineralwollauflage Holzvertäfelung, Ziegelwand

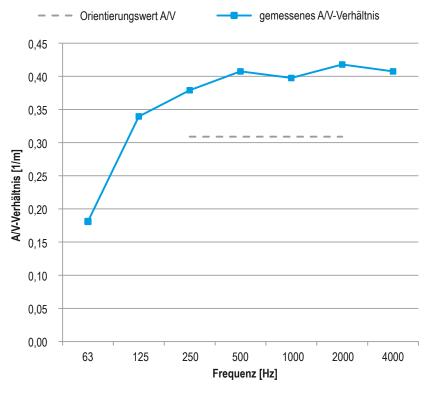
Sitzbänke, Garderobe

Besetzungszustand des Raumes

Gemessen wurde ohne Anwesenheit von Personen

Daten

Datum der Messung 13.07.2015 Messort Kindergarten


Raumbezeichnung Spielflur im Kindergarten

 $\begin{array}{ll} \text{Grundfläche} & 24,1 \text{ m}^2 \\ \text{Volumen} & 57,4 \text{ m}^3 \end{array}$

Diagramm

Wände

Einrichtung

Frequenz f	Gemessene Nachhallzeit	A/V-Verhältnis
Hz	s	1/m
63	0,90	0,18
125	0,48	0,34
250	0,43	0,38
500	0,40	0,41
1000	0,41	0,40
2000	0,39	0,42
4000	0,40	0,41

A/V-Verhältnis gemittelt über den Frequenzbereich 125 Hz bis 4000 Hz 0,40 1/m

Einpersonenbüro

Anforderung

Raumgruppe B4 Einzel- und Mehrpersonenbüro

Raumakustische Maßnahme

Vollflächige Belegung der Decke mit D127.de Cleaneo Akustik-Plattendecke Lochbild: Gerade Quadratlochung 8/18 Q

Nachhallzeitmessung nach DIN EN ISO 3382 Soll-Nachhallzeit nach DIN 18041:2016

Beschreibung des Raumes

Fußboden Parkett

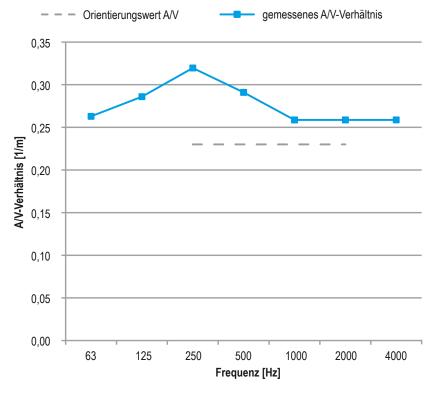
Decke Cleaneo Akustik-Plattendecke

Lochbild 8/18 Q Lochanteil 19,8 % Konstruktionstiefe 100 mm Mit Mineralwollauflage

Außenwand Stahlbetonwand mit Fensterband
Innenwände Metallständerwand mit GK-Beplankung
Einrichtung 2 Tische, 9 Stühle, Schrankwand

Besetzungszustand des Raumes

Gemessen wurde ohne Anwesenheit von Personen


Daten

Datum der Messung 23.06.2015

Messort Knauf Gips KG lphofen Raumbezeichnung Einpersonenbüro

 $\begin{array}{ll} \text{Grundfläche} & 33,4 \text{ m}^2 \\ \text{Volumen} & 103,0 \text{ m}^3 \end{array}$

Diagramm

Frequenz f	Gemessene Nachhallzeit	A/V-Verhältnis
Hz	s	1/m
63	0,62	0,26
125	0,57	0,29
250	0,51	0,32
500	0,56	0,29
1000	0,63	0,26
2000	0,40	0,26
4000	0,42	0,26

A/V-Verhältnis gemittelt über den Frequenzbereich 125 Hz bis 4000 Hz

0,28 1/m

Stadtbibliothek Hanau

Bibliothek

Anforderung

Raumgruppe B3 Bibliothek

Raumakustische Maßnahme

Vollflächige Belegung der Decke mit D127.de Cleaneo Akustik-Plattendecke Lochbild: Streulochung PLUS 8/18/20

Nachhallzeitmessung nach DIN EN ISO 3382 Soll-Nachhallzeit nach DIN 18041:2016

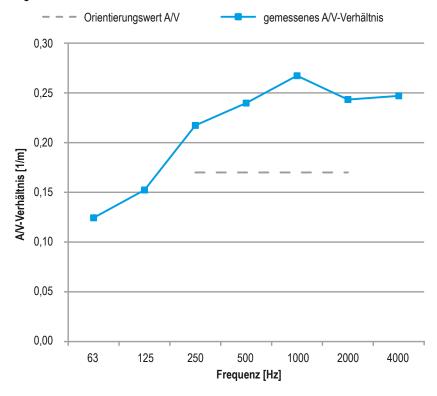
Beschreibung des Raumes

Fußboden Teppich

Decke Cleaneo Akustik-Plattendecke

Lochbild Streulochung PLUS 8/18/20

Lochanteil 13,1 % Konstruktionstiefe 1100 mm Ohne Mineralwollauflage


Wände Massivwände mit raumhohen Fenstersegmenten Einrichtung Im Bereich der Messungen ca. 30 Bücherregale

> Höhe 1,0 m bis 1,8 m Länge 2,0 m bis 4,0 m

Besetzungszustand des Raumes

Gemessen wurde ohne Anwesenheit von Personen

Diagramm

Daten

Datum der Messung	05.08.2015
Messort	EKZ Hanau
Raumbezeichnung	Bibliothek
Grundfläche	2675 m²
Volumen	10700 m³

Gemessene Nachhallzeit	A/V-Verhältnis
s	1/m
0,48	0,12
0,43	0,15
0,40	0,22
0,41	0,24
0,39	0,27
0,40	0,24
0,42	0,25
	Nachhallzeit s 0,48 0,43 0,40 0,41 0,39 0,40

A/V-Verhältnis gemittelt über den Frequenzbereich 250 Hz bis 2000 Hz

0,24 1/m

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 Iphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke

Knauf PFT

Maschinentechnik und Anlagenbau

Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

AK01.de/ger/02.18/0/TBr

Trockenbau-Systeme

AK02.de

chnische Broschüre 03/2018

Raumakustik mit Knauf

Daten für die raumakustische Planung

Inhalt

Einleitung	
Beschreibung	4
Beschreibung der Inhalte dieser Technischen Broschüre	4
Schallabsorption – Anforderungen an die Dämmschicht	5
Anforderungen an die Dämmschicht	5
Grundlagen	
Definitionen der Schallabsorptionsgrade	7
Definitionen der Schallabsorptionsgrade in Anlehnung an DIN EN ISO 11654	7
Schallabsorptionsgrad	8
Akustik-Plattendecken	
Daten für die raumakustische Planung	10
D127.de Cleaneo Akustik-Plattendecke	10
D124.de Cleaneo Akustik-Brandschutzdecke	28
D126.de Cleaneo Akustik-Plattendecke für Akustikputz	29
D126T.de Cleaneo Akustik-Plattendecke Tectopanel für Akustikputz	
D134.de Freitragende Cleaneo Akustik-Brandschutzdecke	
D137.de Freitragende Cleaneo Akustik-Plattendecke	32
Akustik-Kassettendecken	
Daten für die raumakustische Planung	35
D145.de Cleaneo Akustik-Kassettendecke Belgravia	
D146.de Cleaneo Akustik-Kassettendecke Plaza	
D147.de Cleaneo Akustik-Kassettendecke Contur	
D144.de Cleaneo Akustik-Kassettendecke Visona	
D148a.de Cleaneo Freitragende Akustik-Kassettendecke Corridor 400	41
Akustik-Wandbekleidungen und Akustik-Vorsatzschalen	
Daten für die raumakustische Planung	
W623C.de Cleaneo Akustik-Wandbekleidung mit Plattenstreifen	
W623D.de Cleaneo Akustik-Wandbekleidung mit Hutprofil	
W629C.de Cleaneo Akustik-Vorsatzschale	45
Akustik-Wände	
Daten für die raumakustische Planung	
W112C.de Cleaneo Akustik-Wand	47
Einzelabsorber	
Daten für die raumakustische Planung	49
Adit	49
Cleaneo Up	50
Nutzungshinweise	
Hinweise	51
Hinweise zum Dokument	51
Knauf-App TOPview	51
Bestimmungsgemäßer Gebrauch von Knauf Systemen	51

Einleitung

Einleitung

Beschreibung

KNAUF

Beschreibung der Inhalte dieser Technischen Broschüre

In dieser Technischen Broschüre sind die für raumakustische Prognosen notwendigen, frequenzabhängigen Absorptionswerte sämtlicher Akustiksysteme der Knauf Gips KG in Abhängigkeit des Lochbilds, der Konstruktionstiefe und Dämmstoffauflage aufgeführt.

Neben den tabellarischen Werten sind für einen schnellen Überblick des frequenzabhängigen Absorptionsverlaufs die Kurvenverläufe in einem Diagramm dargestellt.

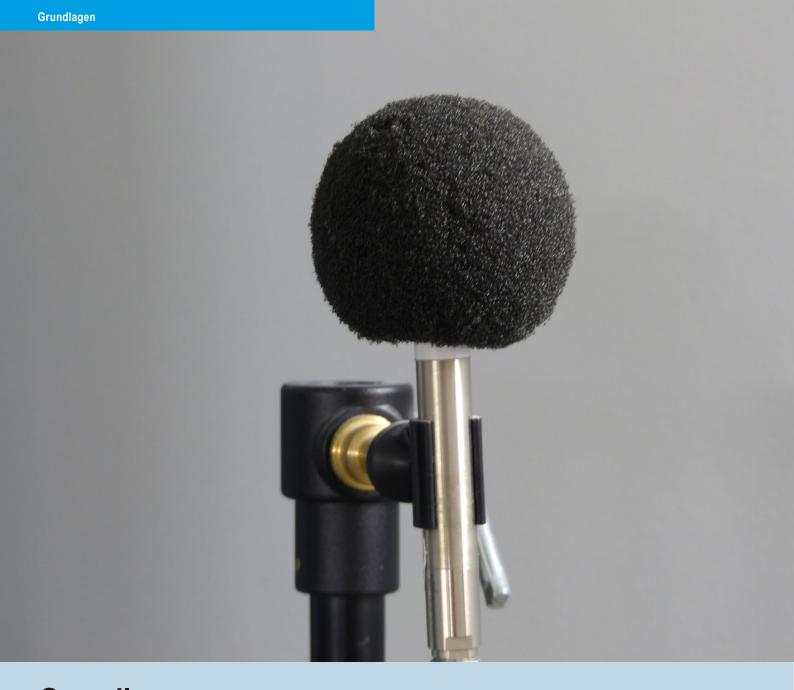
Für flächenhafte Objekte ist die kennzeichnende Größe der praktische Schallabsorptionsgrad zwischen den Oktavfrequenzen von 125 Hz bis 4000 Hz. Darüber hinaus wird für die Produkte der bewertete Schallabsorptionsgrad q_w als Einzahlwert sowie der NRC (Noise Reduction Coefficient) angegeben. Das Verfahren zur Ermittlung des bewerteten Schallabsorptionsgrades wird auf den folgenden Seiten erklärt. Die amerikanische Größe NRC wird aus den α Werten als arithmetischer Mittelwert der Terzfrequenzen 250 Hz, 500 Hz, 1000 Hz und 2000 Hz ermittelt und auf 0,05 gerundet. Die raumakustische Qualität nicht flächenhafter Objekte, sprich Objekte für die keine exakt bestimmbare, akustisch wirksame Fläche ermittelt werden kann, wird nicht über einen Absorptionsgrad, sondern über die äquivalente Schallabsorptionsfläche definiert. Entsprechend ist bei der Wahl eines Absorbers darauf zu achten, ob der praktische Schallabsorptionsgrad oder die äquivalente Schallabsorptionsfläche angegeben ist.

Für die Mehrzahl der aufgeführten Objekte wurde die akustische Qualität nach einem genormten Prüfverfahren durch Messungen im Hallraum bestimmt. Die Resultate der Prüfungen sind in einem Nachweis zusammengefasst und können über den Technischen Auskunftservice angefragt werden. Die in blau aufgeführten Werte sind prognostizierte Absorptionsgrade, basierend auf einem empirischen Verfahren auf Grundlage einer Vielzahl von Messungen in einem vereinfachten Verfahren und Erfahrungen über das Verhalten absorbierender Materialien bei Variation der Konstruktionstiefen. Dämmstoffauflagen und Lochflächenanteilen.

Einleitung

Schallabsorption - Anforderungen an die Dämmschicht

Anforderungen an die Dämmschicht


In dieser Tabelle sind die Anforderungen an die Dämmschicht für die auf den folgenden Seiten dargestellten Knauf Akustik-Systeme mit Dämmschicht aufge-

System Produkt	Mineralwolle DIN EN 13162 Dicke	Längenbezogener Strömungswider- stand	Dämmschicht Beispiele Knauf Insulation
	mm	kPa·s/m²	
D127.de Cleaneo Akustik-Plattendecke mit Cleaneo Akustikplatten	20	≥11	Akustik-Dämmplatte TP 120 A
D127.de Cleaneo Akustik-Plattendecke mit Designpanel	50	≥ 11	Akustik-Dämmplatte TP 440
D124.de Cleaneo Akustik-Brandschutzdecke 2. UK-Ebene – Nur Tragprofil	25	K. A.	Trittschall-Dämmplatte TPE
D124.de Cleaneo Akustik-Brandschutzdecke 2. UK-Ebene – Grund- und Tragprofil	40	≥ 10	Feuerschutz-Dämmplatte DPF-40 ¹⁾
D126.de Cleaneo Akustik-Plattendecke für Akustikputz	30	≥ 11	Akustik-Dämmplatte TP 120 A
D126T.de Cleaneo Akustik-Plattendecke Tectopanel für Akustikputz	30	≥ 10	Akustik-Dämmplatte TP 440
D137.de Freitragende Cleaneo Akustik-Plattendecke mit Designpanel	20	≥ 11	Akustik-Dämmplatte TP 120 A
D137.de Freitragende Cleaneo Akustik-Plattendecke mit Designpanel	50	≥ 11	Akustik-Dämmplatte TP 440
D134.de Freitragende Cleaneo Akustik-Brandschutzdecke mit Cleaneo Akustikplatten	50	≥ 16	Feuerschutz-Dämmplatte DPF-50
D145.de Cleaneo Akustik-Kassettendecke mit Belgravia	50	≥ 11	Akustik-Dämmplatte TP 440
D146.de Cleaneo Akustik-Kassettendecke mit Plaza	50	≥ 11	Akustik-Dämmplatte TP 440
D147.de Cleaneo Akustik-Kassettendecke mit Contur	50	≥ 11	Akustik-Dämmplatte TP 440
D144.de Cleaneo Akustik-Paneeldecke mit Visona	50	≥ 11	Akustik-Dämmplatte TP 440
D148a.de Cleaneo Freitragende Akustik-Paneeldecke mit Corridor 400	50	≥ 11	Akustik-Dämmplatte TP 440
W623C.de Cleaneo Akustik-Wandbekleidung mit Plattenstreifen	20	≥ 11	Akustik-Dämmplatte TP 120 A
W629C.de Cleaneo Akustik-Vorsatzschale	20	≥ 11	Akustik-Dämmplatte TP 120 A
W623D.de Cleaneo Akustik-Wandbekleidung mit Hutprofil	50	≥ 11	Akustik-Dämmplatte TP 440
W112C.de Cleaneo Akustik-Wand	20 (im gelochten Bereich)	≥ 11	Akustik-Dämmplatte TP 120 A
Cleaneo Up	30	≥ 11	Akustik-Dämmplatte TP 440

¹⁾ Schallabsorption geprüft mit Knauf Insulation Feuerschutz-Dämmplatte DPF-40. Brandschutztechnisch notwendig: Mineralwolle-Dämmschicht nach DIN EN 13162, nichtbrennbar, Schmelzpunkt ≥ 1000 °C nach DIN 4102-17 (Dämmstoffe z. B. von Knauf Insulation), Dicke \geq 50 mm, Rohdichte \geq 50 kg/m³.

Hinweis

Werden Anforderungen an das Brandverhalten von Akustikdecken gestellt (z. B. nichtbrennbar), so ist dies für alle verwendeten Materialien, einschließlich einer als Akustikauflage eingesetzten (eingeschweißten) Mineralwolle, nachzuweisen.

Grundlagen

Grundlagen

Definitionen der Schallabsorptionsgrade

Definitionen der Schallabsorptionsgrade in Anlehnung an **DIN EN ISO 11654**

Die in einem Raum eingesetzten Baustoffe und Materialien können aus akustischer Sicht schallhart sein, das heißt keine/kaum schallabsorbierende Eigenschaften aufweisen. In diesem Fall ist der bewertete Schallabsorptionsgrad a,, nahezu 0.

Im Gegenzug kann ein Material hoch schallabsorbierend sein. Wird 100% der auftreffenden Schallenergie absorbiert, d. h. die Schallenergie wird vollständig in Wärmeenergie umgewandelt, beträgt der bewertete Schallabsorptionsgrad α_w nahezu 1.

- α_s bezeichnet die Werte des frequenzabhängigen Schallabsorptionsgrades gemessen im Hallraum in Terzen. Aus ihnen wird der praktische Schallabsorptionsgrad gebildet.
- α, sind die Werte des frequenzabhängigen, praktischen Schallabsorptionsgrades aus je 3 Terzen. Sie werden häufig für frequenzabhängige Prognosen herangezogen.
- a,, ist der bewertete Schallabsorptionsgrad. Er ist frequenzunabhängig und wird als Einzahlwert angegeben. Die Ermittlung der Einzahlbewertung erfolgt nach dem auf Seite 8 beschriebenen Verfahren.

Formindikatoren hinter dem bewerteten Schallabsorptionsgrad geben Aufschluss darüber, ob ein absorbierendes Material besonders im tiefen, mittleren oder hohen Frequenzbereich wirksam ist.

Dabei werden folgende Indikatoren verwendet:

- L, wenn das Produkt im Bereich der tiefen Frequenzen besonders wirksam ist.
 - Z. B. $\alpha_{w} = 0.60 (L)$
- M, wenn das Produkt im Bereich der mittleren Frequenzen besonders wirksam ist.
 - Z. B. $\alpha_{...} = 0.70$ (M)
- H, wenn das Produkt im Bereich der hohen Frequenzen besonders wirk-

Z. B.
$$\alpha_{w} = 0.85$$
 (H)

Kombinationen sind möglich.

Z. B. $\alpha_{w} = 0.70 \text{ (MH)}$

Hinweis

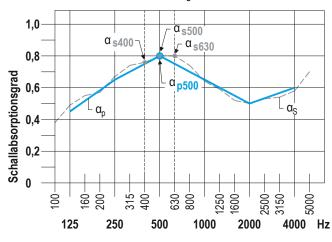
Für eine individuelle Berechnung der Nachhallzeiten beim Einsatz von Knauf Akustik-Produkten steht der Knauf Raumakustikrechner zur Verfügung.

http://www.knauf.de/profi/tools-services/tools/ raumakustikrechner/

Schallabsorptionsgrad und verbale Bewertung nach VDI 3755

Bewerteter Schallabsorptionsgrad $\boldsymbol{\alpha}_w$	Bewertung
≥ 0,80	Höchst absorbierend
0,60 bis 0,75	Hoch absorbierend
0,30 bis 0,55	Absorbierend
0,15 bis 0,25	Gering absorbierend
≤ 0,10	Reflektierend

Grundlagen


Schallabsorptionsgrad

1. Schallabsorptionsgrad

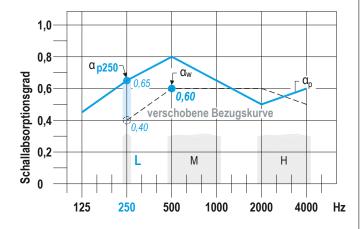
Schallabsorptionsgrad für Terzbandbreite frequenzabhängiger Wert des Schallabsorptionsgrades nach DIN EN ISO 354, gemessen in Terzbändern

Praktischer Schallabsorptionsgrad aus α_s auf Oktavbänder α_{p} umgerechnet nach DIN EN ISO 11654

Beispiel für 500 Hz:
$$\alpha_p 500 = \frac{\alpha_S 400 + \alpha_S 500 + \alpha_S 630}{3}$$

3. Formindikatoren

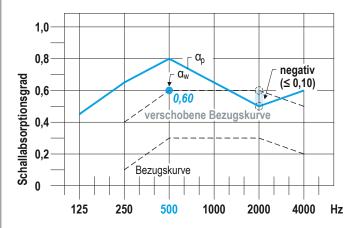
mit Formindikatoren = α_w (...)


wenn α_n für einzelne Oktavfrequenzen die Bezugskurve um \geq 0,25 überschreitet dann Zusatz:

(L) bei 250 Hz

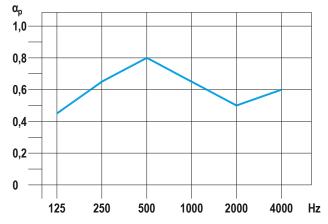
(M) bei 500 oder 1000 Hz

(H) bei 2000 oder 4000 Hz


Beispiel (250 Hz): 0,65 - 0,40 = 0,25 (\geq 0,25) = (L) $\rightarrow \alpha_w$ = 0,60 (L)

2. Bewerteter Schallabsorptionsgrad

Bewerteter Schallabsorptionsgrad nach DIN EN ISO 11654 Einzahlangabe des Schallabsorptionsgrades ermittelt aus verschobener Bezugskurve (die Summe aller negativen Abweichungen ≤ 0,10) und der Schnittpunkt bei 500 Hz nach **DIN EN ISO 11654**


Beispiel

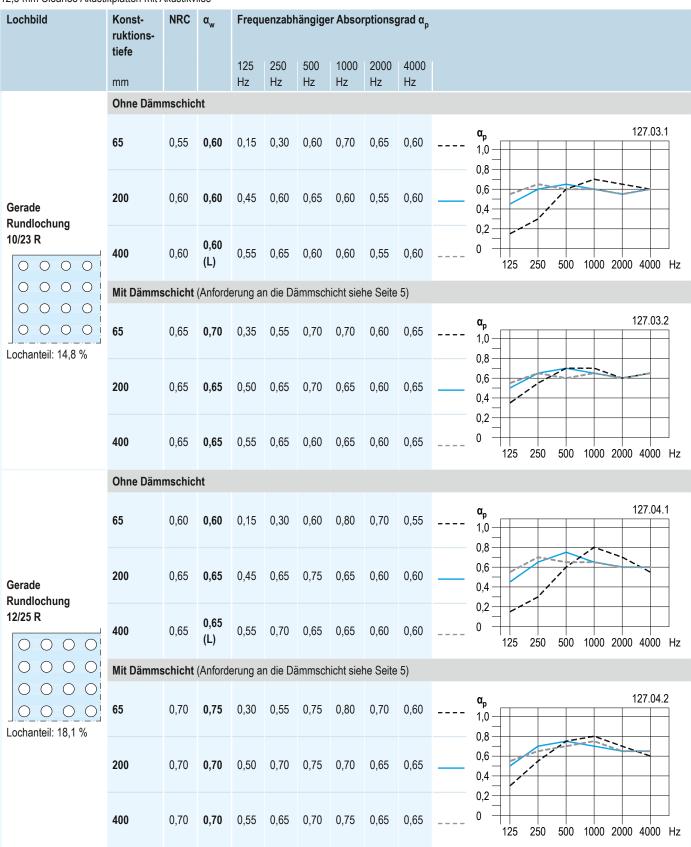
4. Beispiel

Versetzte Rundlochung 12/20/66 R mit Akustikvlies Lochanteil: 19,6 %

Konstruktionstiefe 200 mm

α_{p}	0,45	0,65	0,80	0,65	0,50	0,60
α_{w}	= 0,60 (L))			Hoch ab	sorbierend

Daten für die raumakustische Planung


D127.de Cleaneo Akustik-Plattendecke

2,5 mm Cleaneo Akustikplatten mit Akustikvlies												
Lochbild	Konst- ruktions- tiefe	NRC	$\alpha_{\rm w}$	Frequenzabhängiger Absorptionsgrad α_{p}								
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz			
	Ohne Däm	mschic	ht									
	65	0,45	0,50	0,20	0,30	0,45	0,55	0,45	0,45		α _p 127.01.1 1,0 0,8	
Gerade Rundlochung	200	0,45	0,45	0,40	0,45	0,50	0,45	0,40	0,50	_	0,6	
6/18 R	400	0,45	0,45	0,40	0,45	0,45	0,45	0,45	0,50		125 250 500 1000 2000 4000 Hz	
0 0 0 0 0	Mit Dämm	schicht	(Anford	erung a	n die Da	ämmsch	nicht siel	he Seite	5)			
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	65	0,50	0,50	0,35	0,45	0,50	0,50	0,45	0,50		α _p 127.01.2 1,0 0,8	
	200	0,45	0,50	0,40	0,45	0,50	0,45	0,45	0,50	_	0,6 0,4 0,2	
	400	0,45	0,50	0,40	0,45	0,45	0,50	0,45	0,50		125 250 500 1000 2000 4000 Hz	
	Ohne Däm	mschic	ht									
	65	0,55	0,60	0,15	0,30	0,60	0,75	0,65	0,60		α _p 127.02.1	
Gerade Rundlochung	200	0,60	0,60	0,45	0,60	0,70	0,60	0,55	0,65	_	0,6 0,4 0,2	
8/18 R	400	0,60	0,60 (L)	0,55	0,65	0,60	0,60	0,55	0,65		125 250 500 1000 2000 4000 Hz	
00000	Mit Dämm	schicht	(Anford	erung a	n die Da	ämmsch	nicht siel	he Seite	5)			
O O O O O O O O O O O O O O O O O O O	65	0,65	0,70	0,35	0,55	0,70	0,75	0,65	0,65		α _p 127.02.2 1,0 0,8	
	200	0,65	0,65	0,50	0,65	0,70	0,65	0,60	0,70	_	0,6 0,4 0,2	
	400	0,65	0,65	0,55	0,65	0,60	0,70	0,60	0,65		125 250 500 1000 2000 4000 Hz	

Daten für die raumakustische Planung

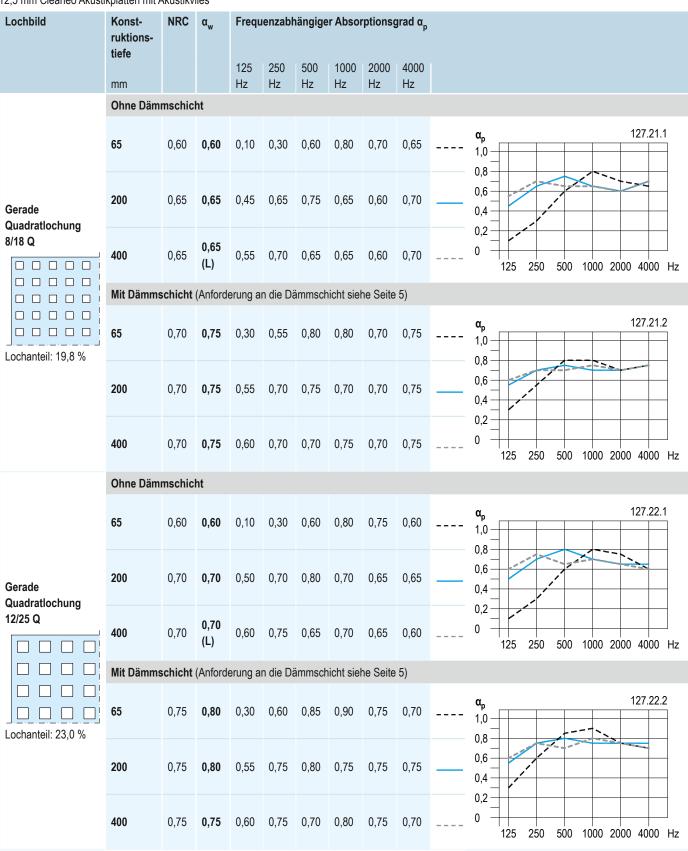
D127.de Cleaneo Akustik-Plattendecke

D127.de Cleaneo Akustik-Plattendecke

	,5 mm Cleaneo Akusti .ochbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequ	enzabł	nängige	r Absoi	rptionso	jrad α _p	p
		mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	
		Ohne Däm	mschic	ht							
		65	0,60	0,60	0,15	0,30	0,60	0,80	0,65	0,60	α _p 127.05.1
	Gerade Rundlochung	200	0,65	0,65	0,45	0,65	0,75	0,65	0,60	0,60	0,6
	5/30 R	400	0,65	0,65 (L)	0,55	0,70	0,65	0,65	0,60	0,60	0,2 0 125 250 500 1000 2000 4000 Hz
	000	Mit Dämms	schicht	(Anforde	erung a	n die Dä	ammsch	icht siel	ne Seite	5)	
-	ochanteil: 19,6 %	65	0,70	0,75	0,30	0,55	0,80	0,80	0,65	0,65	α _p 127.05.2
		200	0,70	0,70	0,50	0,70	0,75	0,70	0,65	0,65	0,6
		400	0,70	0,70	0,55	0,70	0,65	0,75	0,65	0,65	0,2 0 125 250 500 1000 2000 4000 Hz

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke


12,5 mm Cleaneo Akust	Konst-	NRC	α _w	Frequ	ıenzahl	nänning	er Abso	rntione	nrad o						
Lociibiiu	ruktions- tiefe	NICO	u _w	TTEQU	ienzabi	iangige	i Absu	ιριιστισί	jiau u _p						
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz						
	Ohne Däm	mschic	ht												
	65	0,55	0,60	0,15	0,30	0,60	0,70	0,60	0,50		α _p 127.11.1 1,0 0,8				
Versetzte Rundlochung	200	0,60	0,60	0,45	0,60	0,65	0,60	0,50	0,55		0,6				
8/12/50 R	400	0,60	0,60 (L)	0,55	0,65	0,60	0,60	0,55	0,55		0,2 0 125 250 500 1000 2000 4000 Hz				
0 0 0 0	Mit Dämm	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)													
O O O O O O O O O O O O O O O O O O O	65	0,65	0,65	0,35	0,55	0,70	0,70	0,60	0,50		α _p 127.11.2 1,0 0,8				
	200	0,60	0,65	0,50	0,65	0,65	0,65	0,55	0,55		0,6				
	400	0,60	0,60 (L)	0,55	0,65	0,60	0,65	0,55	0,55		0,2 0 125 250 500 1000 2000 4000 Hz				
	Ohne Däm	mschic	ht												
	65	0,55	0,60	0,10	0,30	0,60	0,80	0,60	0,55		α _p 127.12.1 1,0 0,8				
Versetzte Rundlochung	200	0,65	0,60 (L)	0,45	0,65	0,80	0,65	0,50	0,60		0,6				
12/20/66 R	400	0,65	0,65 (L)	0,60	0,70	0,65	0,65	0,55	0,60		0,2 0 125 250 500 1000 2000 4000 Hz				
	Mit Dämm	schicht	(Anford	erung a	n die Da	ämmsch	nicht siel	he Seite	5)						
Lochanteil: 19,6 %	65	0,70	0,70	0,30	0,55	0,80	0,85	0,60	0,65		α _p 127.12.2 1,0 0,8				
	200	0,70	0,70	0,55	0,70	0,80	0,75	0,60	0,65		0,6				
	400	0,70	0,70	0,60	0,70	0,70	0,80	0,60	0,65		0,2 0 125 250 500 1000 2000 4000 Hz				

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

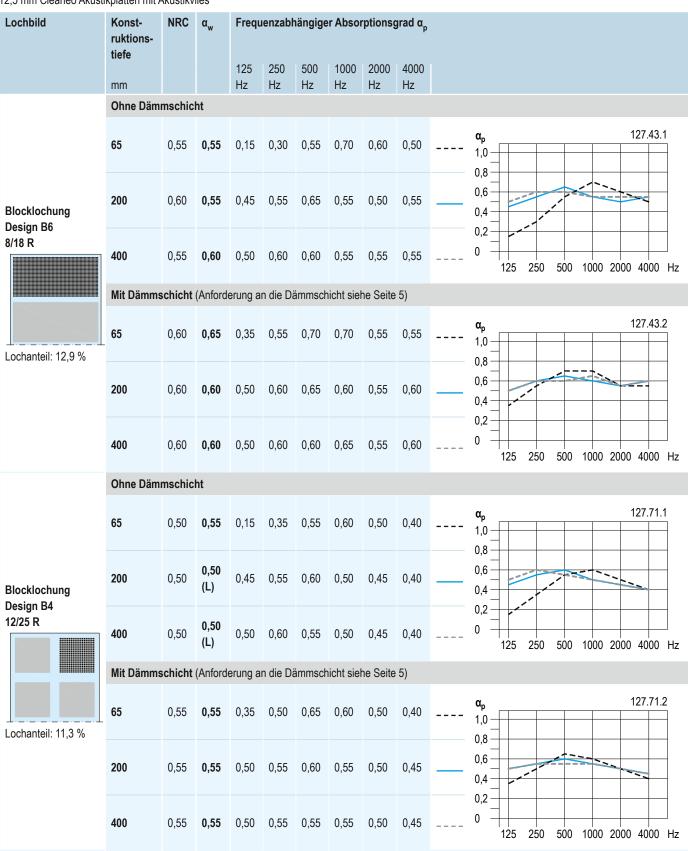
Lochbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequ	enzabł	nängige	er Absoi	ptionso	jrad α _p							
				125	250 Hz	500	1000	2000	4000							
	mm Ohne Däm	mschic	ht	Hz	HZ	Hz	Hz	Hz	Hz							
	65	0,45	0,50	0,15	0,30	0,50	0,60	0,45	0,45		α _p 127.31.1 1,0 0,8					
Streulochung	200	0,50	0,50	0,40	0,50	0,55	0,50	0,40	0,45		0,6					
8/15/20 R	400	0,45	0,50	0,45	0,50	0,50	0,50	0,40	0,45		0,2 0 125 250 500 1000 2000 4000 Hz					
	Mit Dämms	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)														
Lochanteil: 9,9 %	65	0,50	0,50	0,35	0,45	0,55	0,55	0,40	0,45		α _p 127.31.2 1,0 0,8					
	200	0,50	0,50	0,45	0,50	0,55	0,50	0,40	0,50		0,6					
	400	0,50	0,50	0,45	0,50	0,50	0,55	0,45	0,45		0,2 0 125 250 500 1000 2000 4000 Hz					
	Ohne Däm	mschic	ht													
	65	0,50	0,55	0,15	0,30	0,60	0,70	0,50	0,45		α _p 127.33.1 1,0 0,8					
Streulochung	200	0,55	0,55	0,45	0,60	0,70	0,55	0,45	0,45		0,6					
10/16/22 R	400	0,55	0,55 (L)	0,50	0,60	0,60	0,55	0,45	0,50		0,2 0 125 250 500 1000 2000 4000 Hz					
	Mit Dämms	schicht	(Anforde	erung a	n die Da	ämmsch	nicht siel	ne Seite	5)							
Lochanteil: 12,6 %	65	0,60	0,55 (L)	0,35	0,55	0,75	0,70	0,45	0,50		α _p 127.33.2 1,0 0,8					
	200	0,60	0,55 (L)	0,50	0,60	0,65	0,65	0,45	0,50		0,6					
	400	0,55	0,60	0,50	0,55	0,60	0,65	0,50	0,50		0,2 0 125 250 500 1000 2000 4000 Hz					

D127.de Cleaneo Akustik-Plattendecke

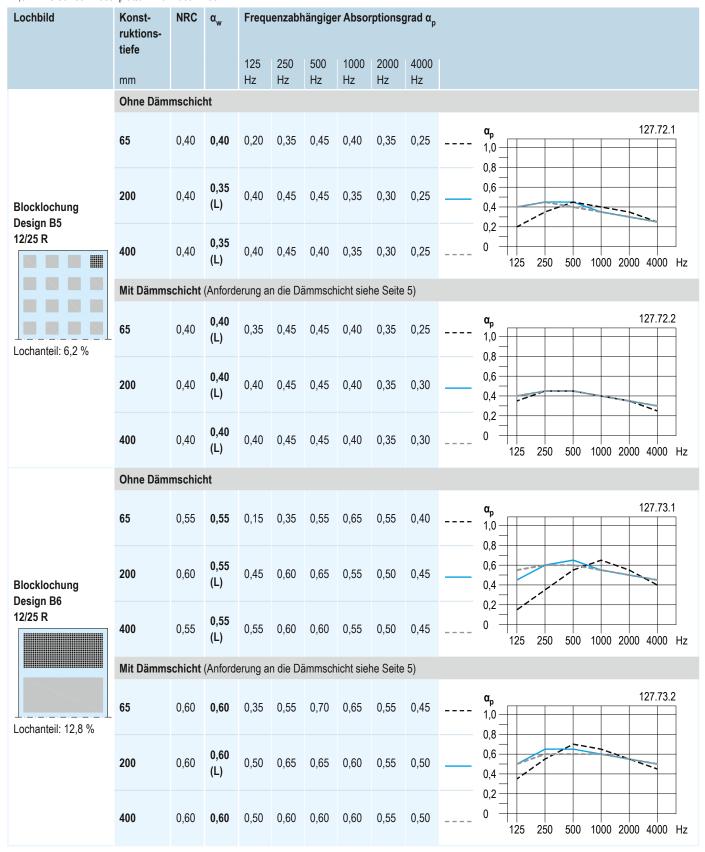
12,5 mm Cleaneo Akustikplatten mit Akustikvlies Lochbild Konst- NRC α _w Frequenzabhängiger Absorptionsgrad α _p												
Lochbild	Konst- ruktions- tiefe	NRC	α _w	Frequ	ienzabl	nangige	er Absoi	rptions(grad α _p			
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz			
	Ohne Däm	mschic	ht						112			
Streulochung 12/20/35 R Lochanteil: 9,8 %	65	0,45	0,45	0,15	0,30	0,55	0,55	0,40	0,35		α _p 127.32.1 1,0 0,8	
	200	0,50	0,45 (L)	0,40	0,50	0,60	0,45	0,35	0,35		0,6	
	400	0,45	0,45 (L)	0,45	0,55	0,55	0,45	0,35	0,35		0,2 0 125 250 500 1000 2000 4000 Hz	
	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)											
	65	0,50	0,45 (L)	0,35	0,50	0,65	0,55	0,35	0,35		α _p 127.32.2 1,0 0,8	
	200	0,50	0,45 (L)	0,45	0,55	0,60	0,50	0,35	0,40		0,6	
	400	0,50	0,45 (L)	0,45	0,50	0,55	0,50	0,35	0,40		0,2 0 125 250 500 1000 2000 4000 Hz	
	Ohne Dämmschicht											
Streulochung RE Lochanteil: 13,6 %	65	0,50	0,50	0,15	0,30	0,55	0,70	0,45	0,40		α _p 127.81.1	
	200	0,55	0,50	0,40	0,50	0,65	0,60	0,40	0,45		0,6 0,4 0,2	
	400	0,55	0,55	0,45	0,55	0,55	0,60	0,45	0,45		125 250 500 1000 2000 4000 Hz	
	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)											
	65	0,55	0,55	0,30	0,50	0,65	0,70	0,45	0,45		α _p 127.81.2 1,0 0,8	
	200	0,55	0,55	0,45	0,55	0,65	0,65	0,45	0,45		0,6	
	400	0,55	0,55	0,45	0,55	0,60	0,65	0,45	0,50		0,2 0 125 250 500 1000 2000 4000 Hz	

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

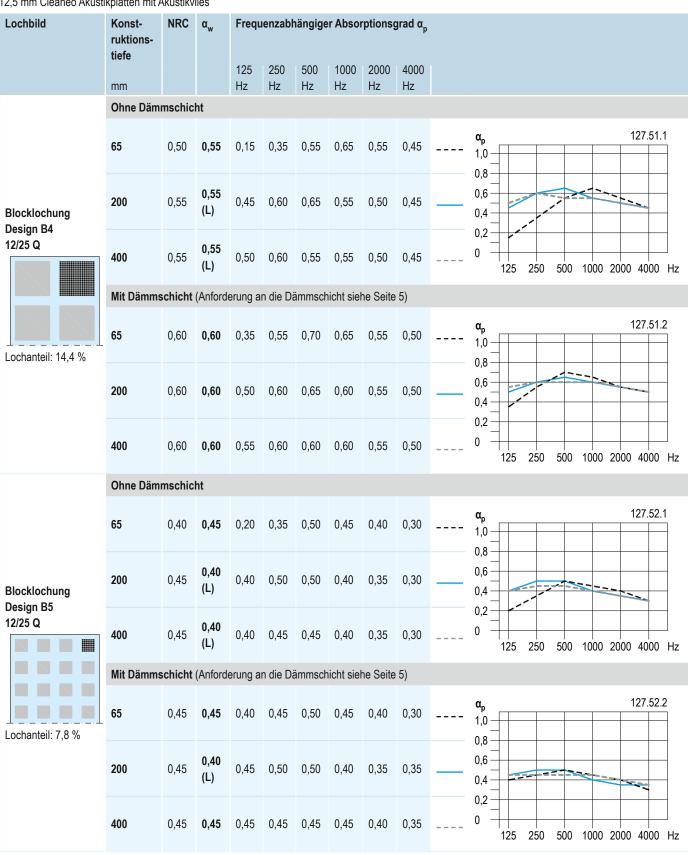

Lochbild	Konst- ruktions- tiefe	NRC	$\alpha_{\rm w}$	Frequenzabhängiger Absorptionsgrad α _p								
				125	250	500	1000	2000	4000			
	mm Ohne Däm	mschic	ht	Hz	Hz	Hz	Hz	Hz	Hz			
Blocklochung Design B4 8/18 R												
	65	0,50	0,55	0,15	0,30	0,55	0,65	0,55	0,50		127.41.1 1,0 0,8	
	200	0,55	0,55	0,45	0,55	0,60	0,55	0,50	0,55	_	0,6	
	400	0,50	0,55 (L)	0,50	0,60	0,55	0,55	0,50	0,55		0,2 0 125 250 500 1000 2000 4000 Hz	
	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)											
Lochanteil: 12,1 %	65	0,60	0,65	0,35	0,50	0,65	0,65	0,55	0,55		α _p 127.41.2 1,0 0,8	
	200	0,60	0,60	0,50	0,60	0,65	0,60	0,55	0,55		0,6	
	400	0,55	0,60	0,50	0,55	0,60	0,60	0,55	0,55		0,2 0 125 250 500 1000 2000 4000 Hz	
	Ohne Dämmschicht											
Blocklochung Design B5 8/18 R Lochanteil: 9,1 %	65	0,45	0,50	0,15	0,30	0,50	0,55	0,50	0,45		α _p 127.42.1 1,0 0,8 0,6 0,4	
	200	0,50	0,50	0,40	0,50	0,55	0,50	0,45	0,45			
	400	0,50	0,50	0,45	0,50	0,50	0,50	0,45	0,45		0,2 0 125 250 500 1000 2000 4000 Hz	
	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)											
	65	0,50	0,55	0,35	0,50	0,60	0,55	0,45	0,45		α _p 127.42.2 1,0 0,8	
	200	0,50	0,50	0,45	0,50	0,55	0,50	0,45	0,45	_	0,6	
	400	0,50	0,50	0,45	0,50	0,50	0,55	0,45	0,45		0,2	

Daten für die raumakustische Planung


D127.de Cleaneo Akustik-Plattendecke

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke



Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Lochbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequenzabhängiger Absorptionsgrad α_{p}											
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz						
	Ohne Däm	mschic	ht												
Blocklochung Design B6	65	0,55	0,55	0,15	0,30	0,60	0,70	0,60	0,45		α _p 127.53.1 1,0 0,8				
	200	0,60	0,60 (L)	0,50	0,65	0,70	0,60	0,55	0,50		0,6				
12/25 Q	400	0,60	0,60 (L)	0,55	0,65	0,60	0,60	0,55	0,50		0,2 0 125 250 500 1000 2000 4000 Hz				
	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)														
Lochanteil: 16,3 %	65	0,65	0,65	0,35	0,55	0,75	0,75	0,60	0,55		α _p 127.53.2 1,0 0,8				
	200	0,65	0,65	0,55	0,65	0,70	0,65	0,60	0,55		0,6				
	400	0,65	0,65	0,55	0,65	0,65	0,65	0,60	0,55		0,2 0 125 250 500 1000 2000 4000 Hz				

D127.de Cleaneo Akustik-Plattendecke

12.5 mm Cleanen Akustiknlatten mit Akustikulies

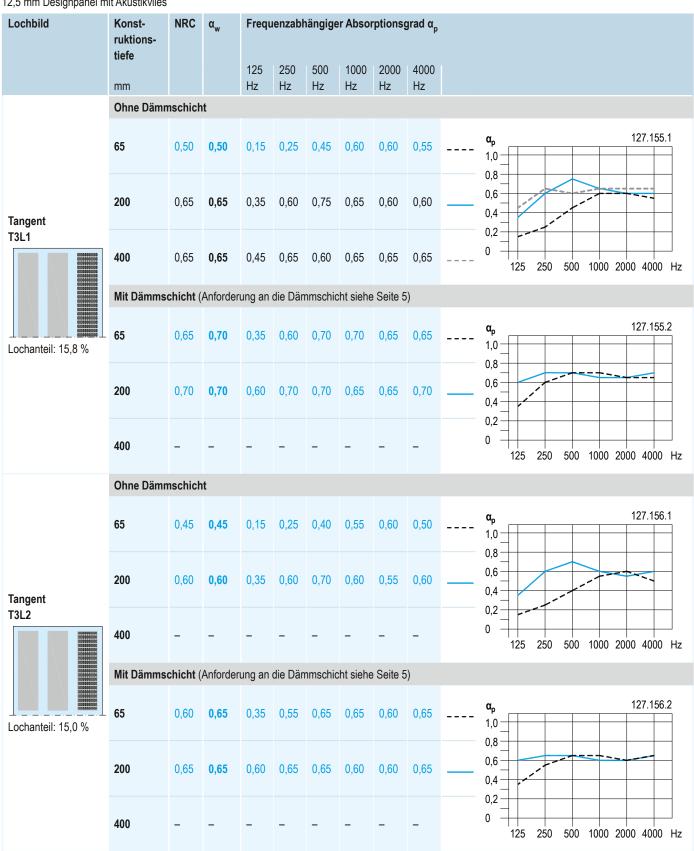
2,5 mm Cleaneo Akustikplatten mit Akustikvlies Lochbild Konst- NRC α _w Frequenzabhängiger Absorptionsgrad α _n															
Lochbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequ	ienzabł	nängige	r Absoı	rptionso	grad α _p						
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz						
	Ohne Däm	mschic	ht	112	112	112	112	112	112						
	65	0,50	0,55	0,15	0,35	0,60	0,65	0,50	0,40		ap 127.61.1 1,0 0.8				
Slotline	200	0,55	0,55 (L)	0,45	0,60	0,65	0,55	0,45	0,45		0,6				
Design B4	400	0,55	0,55 (L)	0,55	0,65	0,55	0,55	0,45	0,45		0,2 0 125 250 500 1000 2000 4000 Hz				
***************************************	Mit Dämms	schicht	(Anford	erung a	n die Da	ämmsch	nicht siel	ne Seite	5)						
Schlitzanteil: 13,7 %	65	0,60	0,55	0,35	0,55	0,70	0,65	0,50	0,45		α _p 127.61.2 1,0 0,8				
	200	0,60	0,60 (L)	0,50	0,65	0,65	0,60	0,50	0,50		0,6				
	400	0,55	0,60	0,55	0,60	0,60	0,60	0,50	0,50		0,2 0 125 250 500 1000 2000 4000 Hz				
	Ohne Dämmschicht														
	65	0,50	0,50	0,15	0,35	0,55	0,60	0,45	0,35		α _p 127.62.1 1,0 0,8				
Slotline	200	0,50	0,50 (L)	0,45	0,55	0,60	0,50	0,40	0,40		0,6				
Design B5	400	0,50	0,50 (L)	0,50	0,60	0,55	0,50	0,40	0,40		0,2 0 125 250 500 1000 2000 4000 Hz				
	Mit Dämms	schicht	(Anford	erung a	n die Da	ämmsch	nicht siel	ne Seite	5)						
Schlitzanteil: 10,9 %	65	0,55	0,50 (L)	0,35	0,55	0,65	0,60	0,45	0,40		α _p 127.62.2 1,0 0,8				
	200	0,55	0,55 (L)	0,50	0,60	0,60	0,55	0,45	0,45		0,6				
	400	0,50	0,50 (L)	0,50	0,55	0,55	0,55	0,45	0,40		0,2 0 125 250 500 1000 2000 4000 Hz				

Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

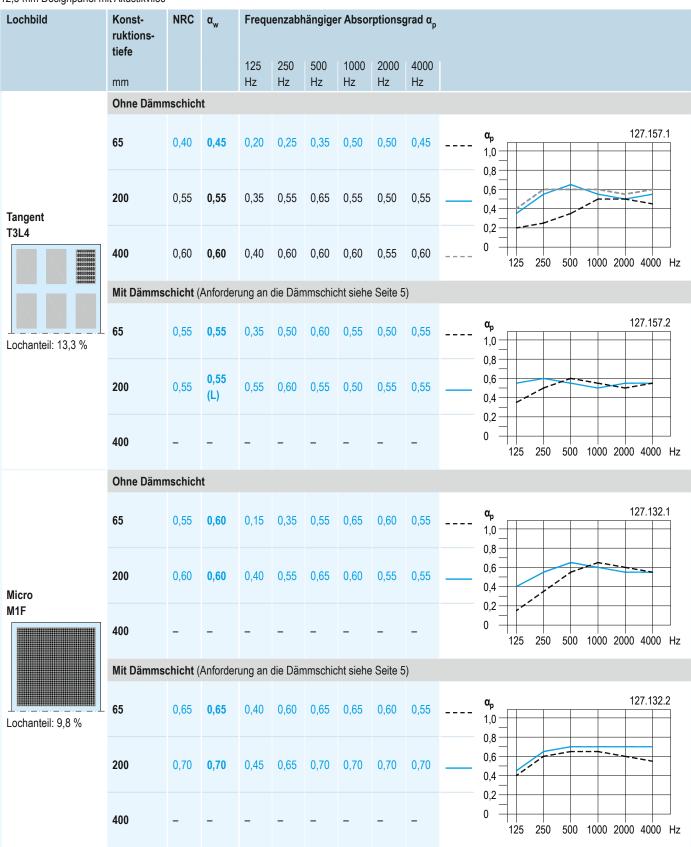
Lochbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequenzabhängiger Absorptionsgrad α_{p}												
				125	250	500	1000	2000	4000							
	mm			Hz	Hz	Hz	Hz	Hz	Hz							
	Ohne Däm	mschic	ht													
Slotline	65	0,55	0,55	0,15	0,35	0,60	0,70	0,55	0,45		α _p 127.63.1 1,0					
	200	0,50	0,50 (L)	0,45	0,55	0,60	0,50	0,45	0,40		0,6					
Design B6	400	0,60	0,55 (L)	0,55	0,65	0,60	0,55	0,50	0,45		0,2 0 125 250 500 1000 2000 4000 Hz					
	Mit Dämms	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)														
Schlitzanteil: 15,7 %	65	0,65	0,60	0,35	0,55	0,75	0,70	0,55	0,50		α _p 127.63.2 1,0 0,8					
	200	0,65	0,65 (L)	0,55	0,70	0,70	0,65	0,55	0,55		0,6					
	400	0,60	0,60 (L)	0,55	0,65	0,65	0,65	0,55	0,50		0,2					



Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

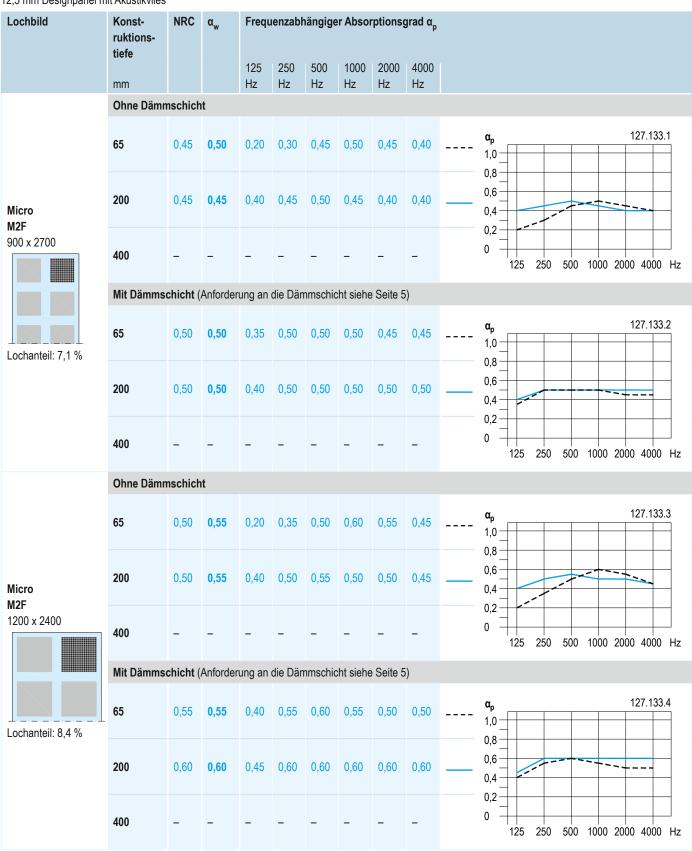
12,5 mm Designpanel mit Akustikvlies



Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

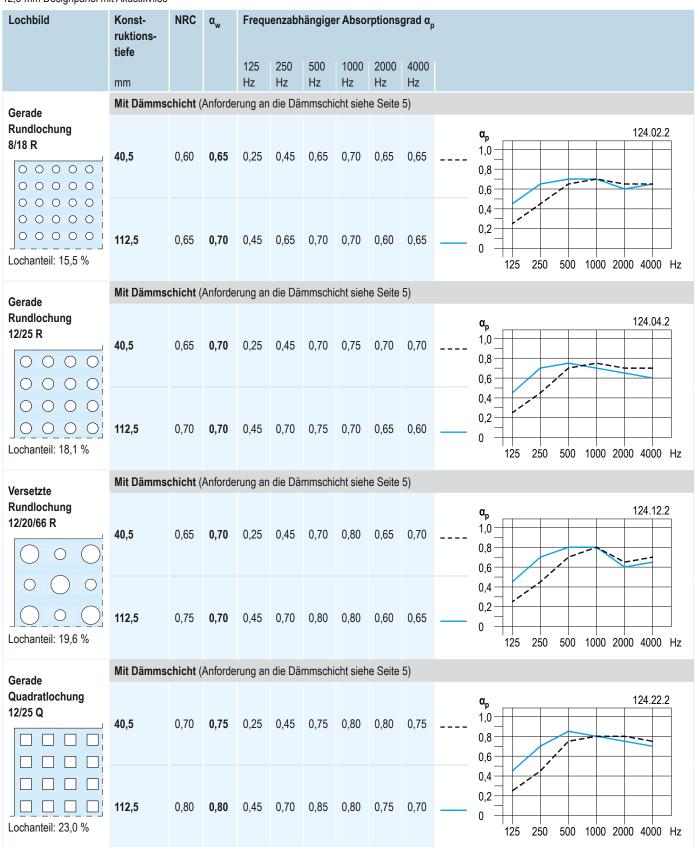
12,5 mm Designpanel mit Akustikvlies



Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

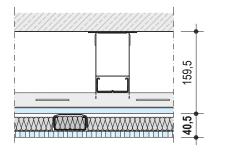
12,5 mm Designpanel mit Akustikvlies

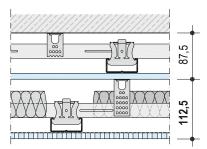


Daten für die raumakustische Planung

D127.de Cleaneo Akustik-Plattendecke

12,5 mm Designpanel mit Akustikvlies


D124.de Cleaneo Akustik-Brandschutzdecke


12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Lochbild	Konst- ruktions tiefe										
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
	Mit Däm	mschicht (Anforde	rung an	die Dä	mmschi	cht sieh	e Seite	5)		
Streulochung 8/15/20 R	40,5	0,45	0,50	0,25	0,40	0,50	0,55	0,45	0,40		α _p 124.31.2 1,0 0,8 0,6
Lochanteil: 9,9	112,5	0,50	0,50	0,40	0,50	0,55	0,55	0,40	0,45		0,4 0,2 0 125 250 500 1000 2000 4000 Hz

Prüfaufbau D124.de

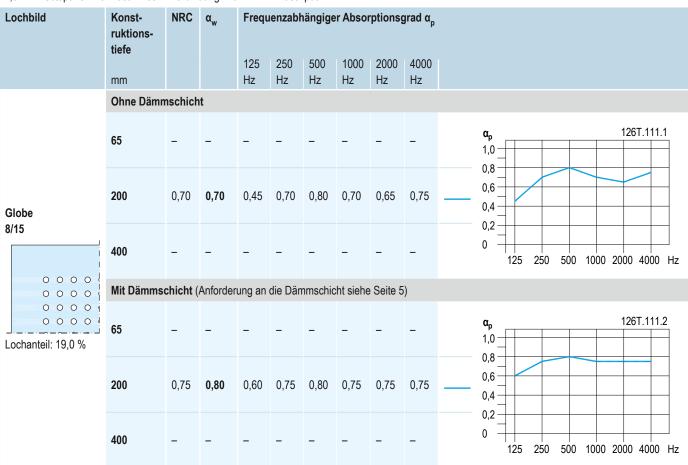
Die Konstruktionstiefe für Akustik-Brandschutzdecken wird bis zur ersten, akustisch geschlossenen Ebene angegeben. Bei diesem System demnach bis zur ungelochten Platte der 1. UK-Ebene.

Daten für die raumakustische Planung

D126.de Cleaneo Akustik-Plattendecke für Akustikputz

12,5 mm Cleaneo Putzträgerplatten mit rückseitiger Folienkaschierung in Verbindung mit fumi Akustikputz

Lo	chbild	Konst- ruktions- tiefe	NRC	α_{w}	Frequenzabhängiger Absorptionsgrad α _p												
		mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz							
		Ohne Dämn	nschich	it													
	Gerade Quadratlochung	65	0,45	0,45	0,20	0,25	0,45	0,60	0,45	0,55		α _p 126.22.1 1,0 0,8					
		200	0,45	0,50	0,25	0,40	0,55	0,50	0,45	0,55		0,6 0,4 0,2					
	25 Q	400	0,45	0,50	0,25	0,40	0,55	0,50	0,45	0,55		125 250 500 1000 2000 4000 Hz					
		Mit Dämmse	Mit Dämmschicht (Anforderung an die Dämmschicht siehe Seite 5)														
Loc		65	0,50	0,55	0,25	0,35	0,55	0,55	0,45	0,55		α _p 126.22.2 1,0 0,8					
		200	0,50	0,55	0,25	0,40	0,55	0,55	0,45	0,55		0,6					
		400	0,50	0,55	0,25	0,35	0,55	0,55	0,45	0,60		0,2 0 125 250 500 1000 2000 4000 Hz					



Daten für die raumakustische Planung

D126T.de Cleaneo Akustik-Plattendecke Tectopanel für Akustikputz

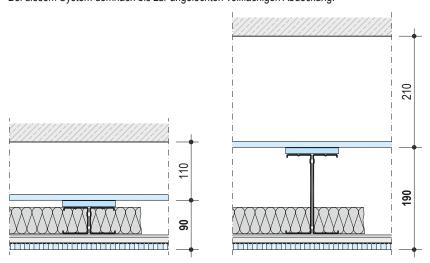
12,5 mm Tectopanel mit Akustikvlies in Verbindung mit KRAFT Akustikputz

Daten für die raumakustische Planung

D134.de Freitragende Cleaneo Akustik-Brandschutzdecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Lochbild	Konst- ruktions- tiefe	NRC	$\alpha_{\rm w}$	Frequ	Frequenzabhängiger Absorptionsgrad $\boldsymbol{\alpha}_p$								
	mm			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz				
Gerade	Mit Dämms	chicht (Anforder	ung an	die Däm	mschich	nt siehe	Seite 5))				
Rundlochung 8/18 R	90	0,65	0,65	0,45	0,60	0,65	0,65	0,65	0,70	1,0 0,8 0,6			
O O O O O O O O O O O O O O O O O O O	190	0,65	0,65	0,55	0,60	0,65	0,65	0,65	0,70	0,4 0,2 0 125 250 500 1000 2000 4000 Hz			
Gerade	Mit Dämms	chicht (Anforder	ung an	die Däm	mschich	nt siehe	Seite 5))				
Rundlochung 12/25 R	90	0,70	0,75	0,45	0,65	0,75	0,70	0,70	0,65	α _p 134.04.1 0,8 0,6			
O O O O O O O O O O O O O O O O O O O	190	0,70	0,70	0,65	0,70	0,70	0,70	0,70	0,70	0,4 0,2 0 125 250 500 1000 2000 4000 Hz			
Versetzte	Mit Dämms	chicht (Anforder	ung an	die Däm	mschich	nt siehe	Seite 5))				
Rundlochung 12/20/66 R	90	0,70	0,75	0,45	0,70	0,75	0,75	0,65	0,65	α _p 134.12.1 1,0 0,8 0,6			
Lochanteil: 19,6 %	190	0,70	0,75	0,60	0,70	0,75	0,75	0,65	0,70	0,4 0,2 0 125 250 500 1000 2000 4000 Hz			

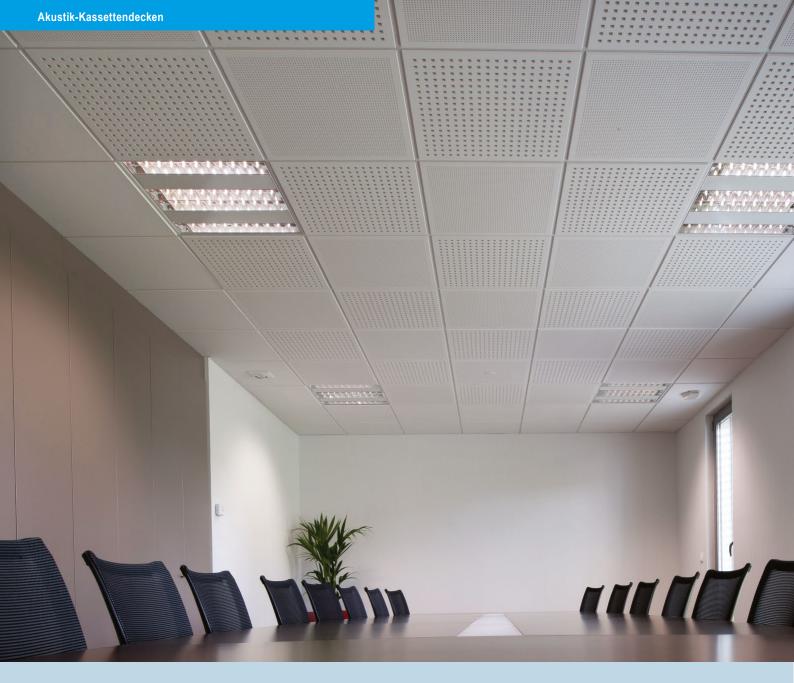

D134.de Freitragende Cleaneo Akustik-Brandschutzdecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Lochbild	Konst- ruktions- tiefe	NRC	α _w	, Frequenzabhängiger Absorptionsgrad $\boldsymbol{\alpha}_{p}$									
				125	250	500	1000	2000	4000				
	mm Mit Dämms	chicht	(Anforda	Hz	Hz die Dä	Hz	Hz cht sieh	Hz Soite	Hz				
Gerade Quadratlochung 12/25 Q	90	0,75	0,80	0,45	0,70	0,80	0,75	0,75	0,75	α _p 134.22.1 1,0 0,8 0,6			
Lochanteil: 23,0 %	190	0,75	0,75	0,65	0,75	0,75	0,75	0,75	0,75	0,4 0,2 0 125 250 500 1000 2000 4000 Hz			
	Mit Dämms	schicht	(Anforde	erung ar	n die Dä	mmschi	cht sieh	e Seite	5)				
Streulochung 8/15/20 R	90	0,50	0,50	0,40	0,50	0,50	0,50	0,45	0,45	α _p 134.31.1 0,8 0,6			
	190	0,50	0,50	0,50	0,50	0,50	0,55	0,45	0,50	0,4 0,2 0 125 250 500 1000 2000 4000 Hz			

Prüfaufbau D134.de

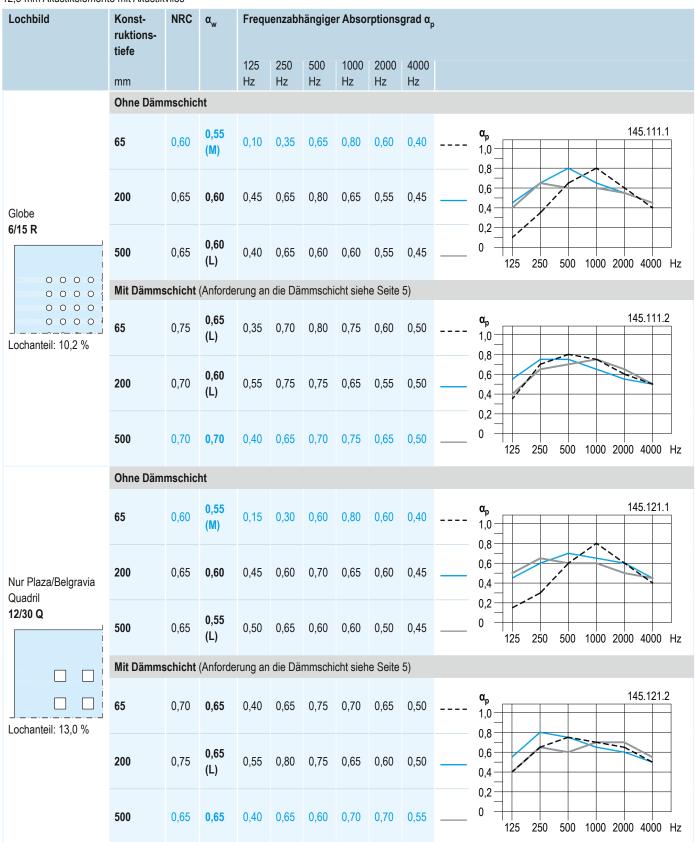
Die Konstruktionstiefe für Akustik-Brandschutzdecken wird bis zur ersten, akustisch geschlossenen Ebene angegeben. Bei diesem System demnach bis zur ungelochten vollflächigen Abdeckung.


D137.de Freitragende Cleaneo Akustik-Plattendecke

12,5 mm Cleaneo Akustikplatten mit Akustikvlies

Für dieses System können die Absorptionswerte des Systems D127.de unter Beachtung der Konstruktionstiefe analog angewendet werden.

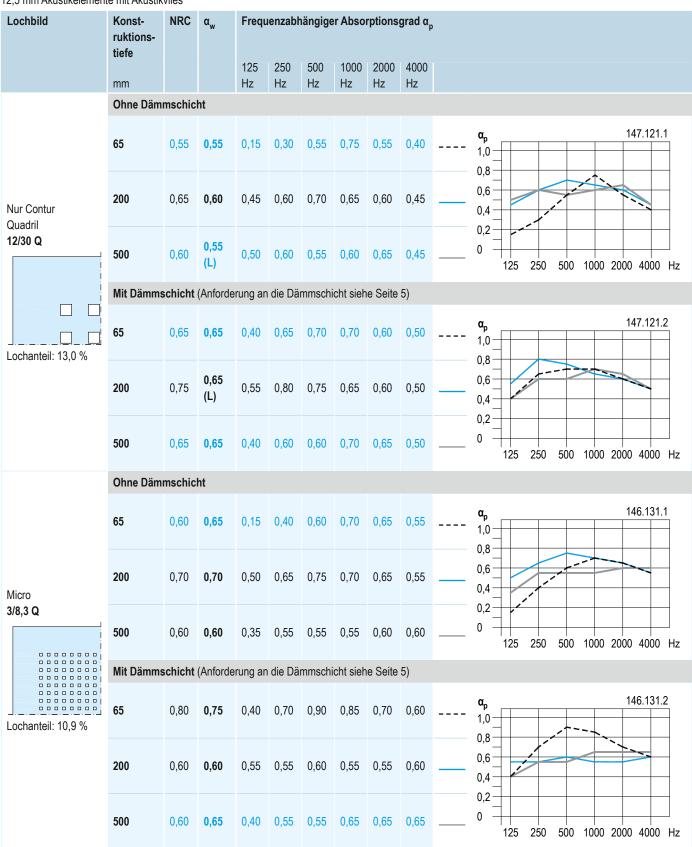
Daten für die raumakustische Planung


Akustik-Kassettendecken

Daten für die raumakustische Planung

D145.de Cleaneo Akustik-Kassettendecke Belgravia D146.de Cleaneo Akustik-Kassettendecke Plaza D147.de Cleaneo Akustik-Kassettendecke Contur

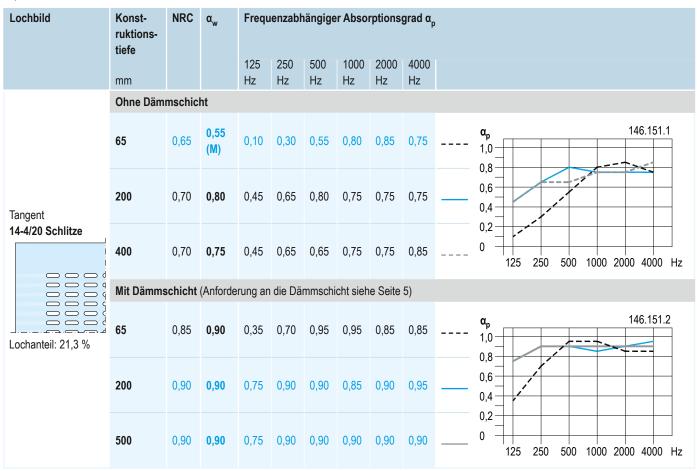
12,5 mm Akustikelemente mit Akustikvlies



Daten für die raumakustische Planung

D145.de Cleaneo Akustik-Kassettendecke Belgravia D146.de Cleaneo Akustik-Kassettendecke Plaza D147.de Cleaneo Akustik-Kassettendecke Contur

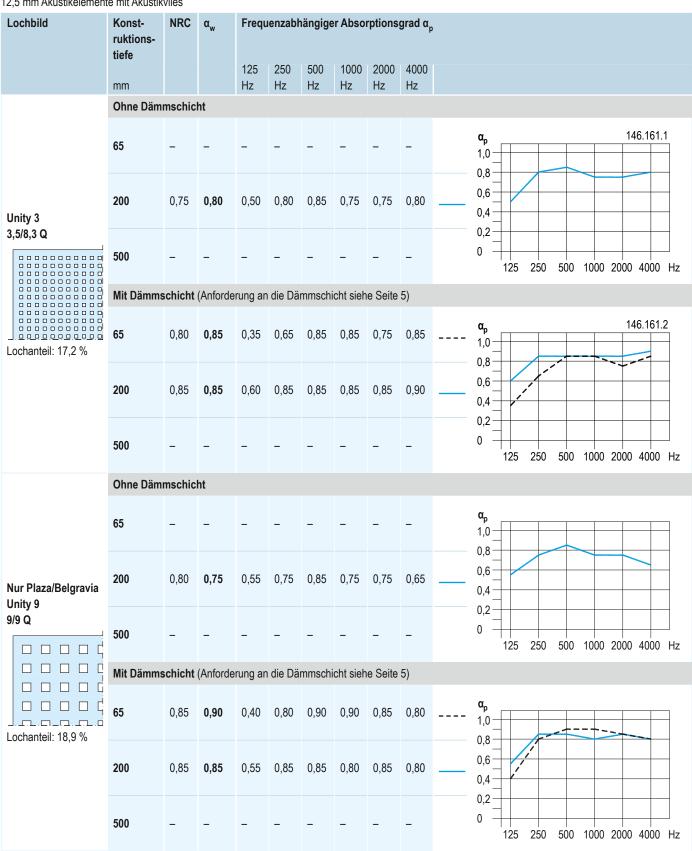
12,5 mm Akustikelemente mit Akustikvlies



Daten für die raumakustische Planung

D145.de Cleaneo Akustik-Kassettendecke Belgravia D146.de Cleaneo Akustik-Kassettendecke Plaza

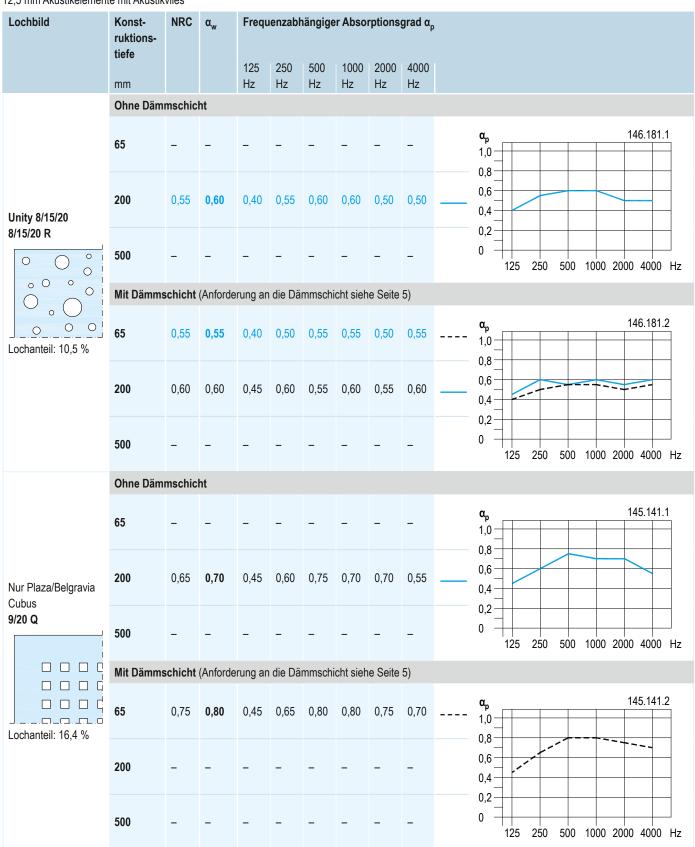
12,5 mm Akustikelemente mit Akustikvlies



Daten für die raumakustische Planung

D145.de Cleaneo Akustik-Kassettendecke Belgravia D146.de Cleaneo Akustik-Kassettendecke Plaza D147.de Cleaneo Akustik-Kassettendecke Contur

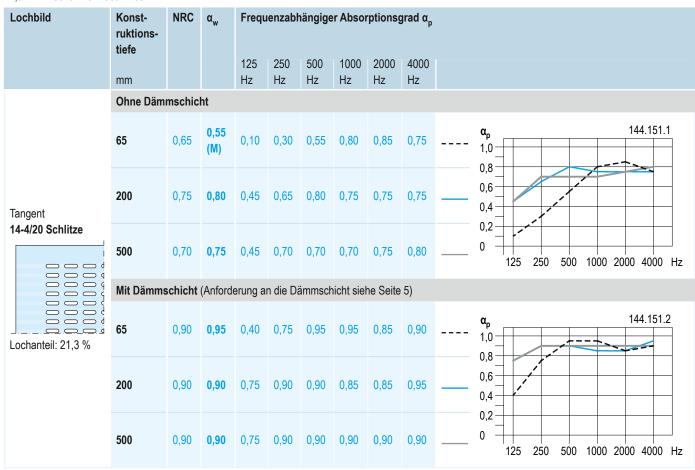
12,5 mm Akustikelemente mit Akustikvlies



Daten für die raumakustische Planung

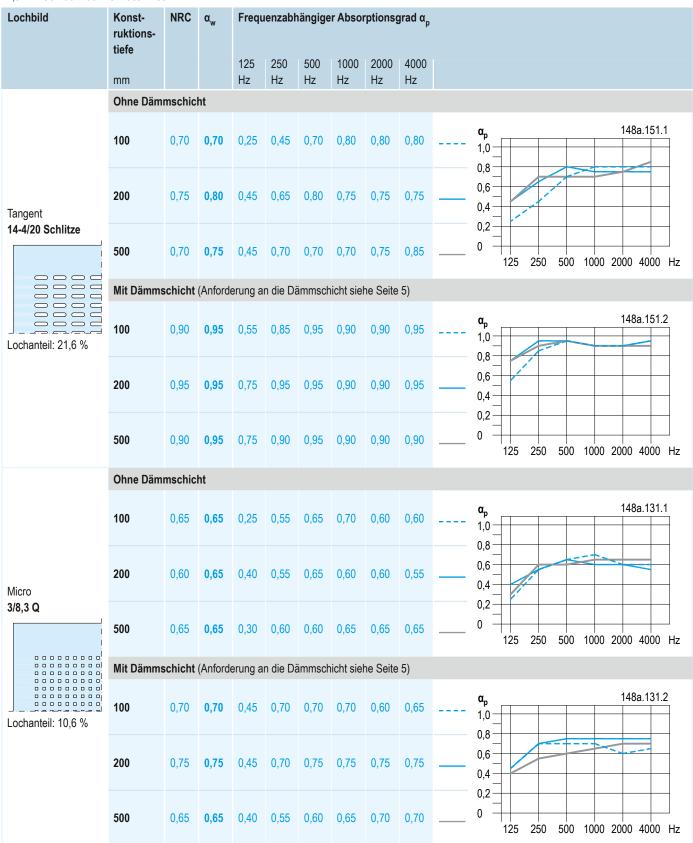
D145.de Cleaneo Akustik-Kassettendecke Belgravia D146.de Cleaneo Akustik-Kassettendecke Plaza D147.de Cleaneo Akustik-Kassettendecke Contur

12,5 mm Akustikelemente mit Akustikvlies



D144.de Cleaneo Akustik-Kassettendecke Visona

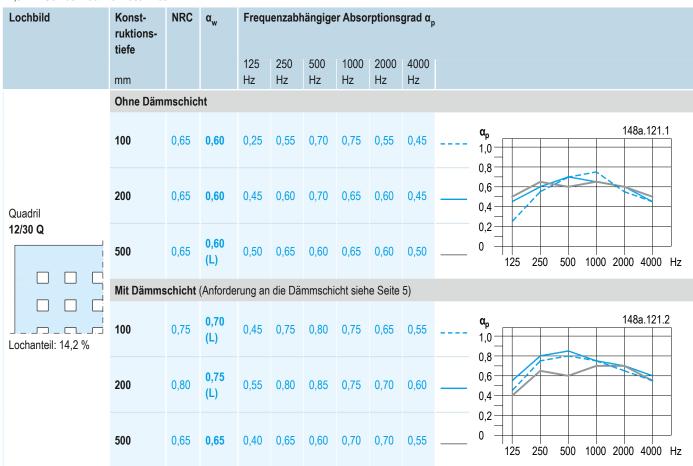
12,5 mm Visona mit Akustikvlies



Daten für die raumakustische Planung

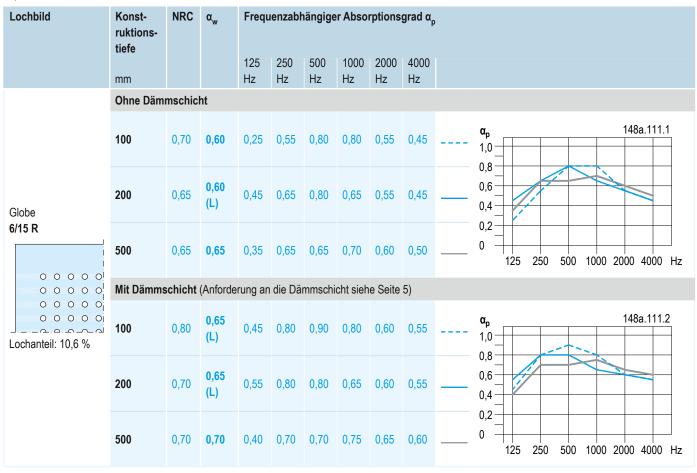
D148a.de Cleaneo Freitragende Akustik-Kassettendecke Corridor 400

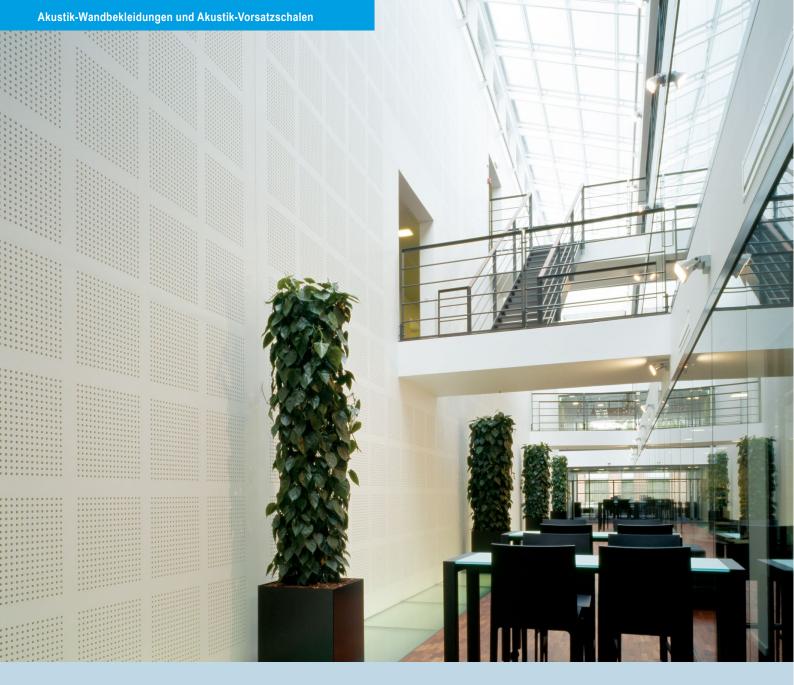
12,5 mm Corridor 400 mit Akustikvlies



D148a.de Cleaneo Freitragende Akustik-Kassettendecke Corridor 400

12,5 mm Corridor 400 mit Akustikvlies





Daten für die raumakustische Planung

D148a.de Cleaneo Freitragende Akustik-Kassettendecke Corridor 400

12,5 mm Corridor 400 mit Akustikvlies

Akustik-Wandbekleidungen Akustik-Vorsatzschalen

Akustik-Wandbekleidungen und Akustik-Vorsatzschalen

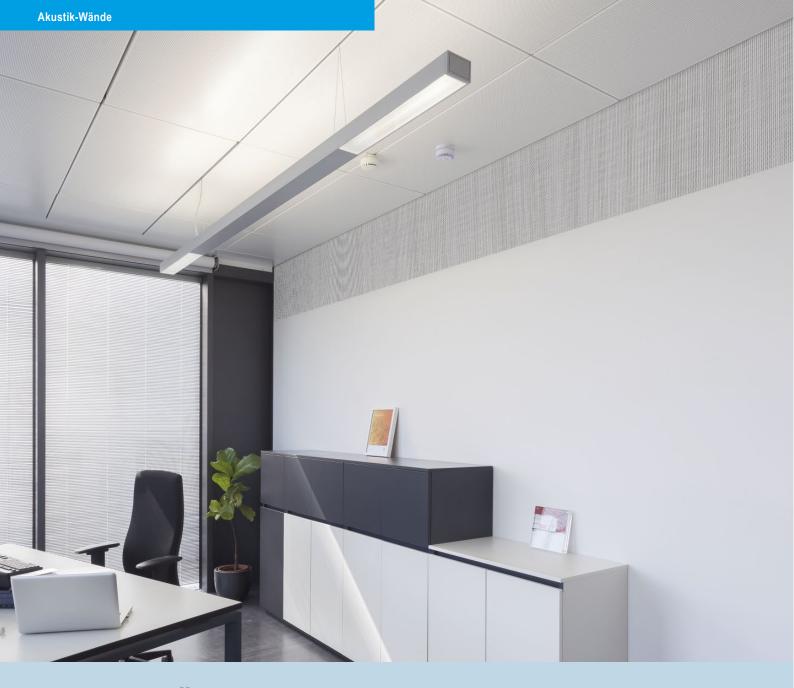
Daten für die raumakustische Planung

W623C.de Cleaneo Akustik-Wandbekleidung mit Plattenstreifen

Für dieses System können unter Beachtung der Hohlraumtiefe die Absorptionswerte des Systems D127.de Cleaneo Akustik-Plattendecke analog angewendet werden.

Siehe "D127.de Cleaneo Akustik-Plattendecke" auf Seite 10 ff.

W623D.de Cleaneo Akustik-Wandbekleidung mit Hutprofil


Für dieses System können unter Beachtung der Hohlraumtiefe die Absorptionswerte des Systems D127.de Cleaneo Akustik-Plattendecke mit Designpanel analog angewendet werden.

Siehe "D127.de Cleaneo Akustik-Plattendecke" auf Seite 24 ff.

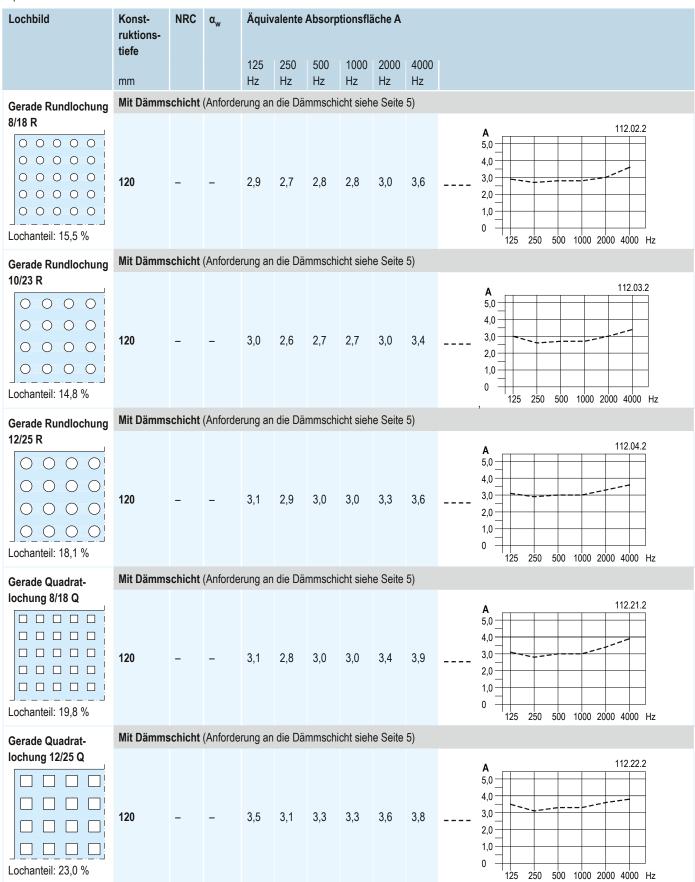
W629C.de Cleaneo Akustik-Vorsatzschale

Für dieses System können unter Beachtung der Hohlraumtiefe die Absorptionswerte des Systems D127.de Cleaneo Akustik-Plattendecke analog angewendet werden.

Siehe "D127.de Cleaneo Akustik-Plattendecke" auf Seite 10 ff.

Akustik-Wände

Akustik-Wände



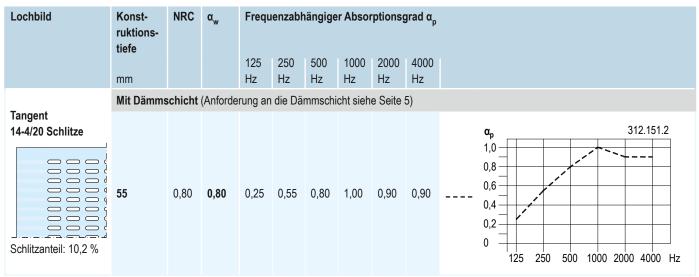
Daten für die raumakustische Planung

W112C.de Cleaneo Akustik-Wand

Akustikwand mit Brandschutz, Schallschutz und Akustik

Angegeben wird die äquivalente Schallabsorptionsfläche in m² für eine Prüffläche von 12 m² Wand bei der 4 m² mit 12,5 mm Cleaneo Akustikplatten beplankt wurden.

Einzelabsorber


Einzelabsorber

Daten für die raumakustische Planung

Adit

Akustikelement 450 x 2400 mm

Einzelabsorber

Cleaneo Up

Akustikelement aus 12,5 mm Cleaneo Akustikplatten

Lochbild	Konst- NRC α _w Äquivalente Absorptionsfläche A in m² pro Deckensegel ruktions-										
	tiefe			125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz		
		mm m	it Dämm							ehe Seite 5)	
	100	-	-	0,4	1,1	1,5	1,2	1,0	1,1	A 311.02.1	
	200	-	-	0,4	1,2	1,5	1,4	1,3	1,4	5,0 4,0 3,0	
Gerade Rundlochung 8/18 R	400	-	-	0,4	1,0	1,4	1,6	1,6	1,7	2,0	
	1000	-	-	0,4	0,8	1,6	2,0	1,9	2,1	125 250 500 1000 2000 4000 Hz ——	
00000	1000 x 200	0 mm, r	mit Dämi	mschic	ht (Anfo	orderun	g an die	Dämms	chicht s	siehe Seite 5)	
O O O O O O O O O O O O O O O O O O O	100	-	-	0,7	1,6	2,0	1,7	1,4	1,6	A 311.02.2	
	200	-	-	0,7	1,8	2,2	1,9	1,8	1,9	5,0 4,0 3,0	
	400	-	-	0,7	1,6	2,1	2,3	2,2	2,4	2,0 1,0 0	
	1000	-	-	0,6	1,3	2,4	2,9	2,7	2,9	125 250 500 1000 2000 4000 Hz	

Nutzungshinweise

Hinweise

Hinweise zum Dokument

Knauf Technische Broschüren sind die Informationsunterlagen zu speziellen Themen sowie Fachkompetenzen von Knauf. Die enthaltenen Informationen und Vorgaben, Konstruktionsvarianten, Ausführungsdetails und aufgeführten Produkte basieren, soweit nicht anders ausgewiesen, auf den zum Zeitpunkt der Erstellung gültigen Verwendbarkeitsnachweisen (z. B. allgemeine bauaufsichtliche Prüfzeugnisse abP und/oder allgemeine bauaufsichtliche Zulassungen abZ) und Normen. Zusätzlich sind bauphysikalische (Brandschutz und Schallschutz), konstruktive und statische Anforderungen berücksichtigt. Die enthaltenen Ausführungsdetails stellen Beispiele dar und können für verschiedene Beplankungsvarianten des jeweiligen Systems analog angewendet werden. Dabei sind bei Anforderungen an den Brand- und/oder Schallschutz jedoch die ggf. erforderlichen Zusatzmaßnahmen und/oder Einschränkungen zu beachten.

Verweise auf weitere Dokumente

Technische Broschüren

- Raumakustik mit Knauf Grundlagen und Konzepte, AK01.de
- Schallschutz mit Knauf Grundlagen, SS01.de
- Schallschutz mit Knauf Innenwände, SS02.de
- Schallschutz mit Knauf Decken, SS03.de
- Schallschutz mit Knauf Außenbauteile, SS04.de
- Schallschutz mit Knauf Raum-in-Raum-Systeme, SS05.de

Technische Blätter

■ Technische Blätter der einzelnen Knauf Systemkomponenten Detailblätter

- Knauf Cleaneo Akustik-Plattendecken, D12.de
- Knauf Cleaneo Akustik-Kassettendecken, D14.de
- Knauf Cleaneo Akustik-Wandsysteme, AK04.de

Knauf-App TOPview

In der App TOPview finden sie interessante Aspekte zu den Themen Akustik erleben und Akustik messen. Die App steht für iOS und Android zur Verfügung, siehe auch auf der Knauf Homepage unter:

https://www.knauf.de/profi/tools-services/tools/vr-app-topview/

Bestimmungsgemäßer Gebrauch von Knauf Systemen Beachten Sie Folgendes:

Achtung

Knauf Systeme dürfen nur für die in den Knauf-Dokumenten angegebenen Anwendungsfälle zum Einsatz kommen. Falls Fremdprodukte oder Fremdkomponenten zum Einsatz kommen, müssen diese von Knauf empfohlen bzw. zugelassen sein. Die einwandfreie Anwendung der Produkte/Systeme setzt sachgemäßen Transport, Lagerung, Aufstellung, Montage und Instandhaltung voraus.

NUTZEN SIE DIE WERTVOLLEN SERVICES VON KNAUF

KNAUF DIREKT

Unser technischer Auskunftsservice – von Profis für Profis! Wählen Sie den direkten Draht zur "just in time" Beratung und nutzen Sie unsere langjährige Erfahrung für Ihre Sicherheit.

- > Trockenbau- und Boden-Systeme Tel. 09001 31-1000 *
- > Putz- und Fassadensysteme Tel. 09001 31-2000 *

Mo-Do 7:00-18:00 und Fr 7:00-17:00 Uhr

KNAUF AKADEMIE

Mit qualitativ hochwertigen sowie praxisorientierten Seminaren bieten wir Ihnen frisches Wissen für heute und auch morgen. Nutzen Sie diesen Vorsprung für sich und Ihre Mitarbeiter, denn Bildung ist Zukunft!

- > Tel. 09323 31-487
- > seminare@knauf-akademie.de

KNAUF DIGITAL

Web, App oder Social Media – Technische Unterlagen, interaktive Animationen, Videos und vieles mehr gibt es rund um die Uhr stets aktuell und natürlich kostenlos in der digitalen Welt von Knauf. Diese Klicks lohnen sich!

- > www.knauf.de
- > www.youtube.com/knauf
- > www.twitter.com/knauf_presse

* Ein Anruf bei Knauf Direkt wird mit 0,39 €/Min. berechnet. Anrufer, die nicht mit Telefonnummer in der Knauf Gips KG Adressdatenbank hinterlegt sind, z. B. private Bauherren oder Nicht-Kunden, zahlen 1,69 €/Min. aus dem deutschen Festnetz. Mobilfunkanrufe können abweichen, sie sind abhängig von Netzbetreiber und Tarif.

Knauf Gips KG Am Bahnhof 7 97346 Iphofen Knauf AMF Decken-Systeme

Knauf Aquapanel

TecTem® Innendämmung Dämmstoffschüttungen

Knauf Bauprodukte Profi-Lösungen für Zuhause

Knauf Design Oberflächenkompetenz **Knauf Gips**

Trockenbau-Systeme Boden-Systeme Putz- und Fassadensysteme

Knauf Insulation

Dämmsysteme für Sanierung und Neubau

Knauf Integral

Gipsfasertechnologie für Boden, Wand und Decke Knauf PFT

Maschinentechnik und Anlagenbau

Marbos

Mörtelsysteme für Pflasterdecken im Tiefbau

Sakret Bausysteme Trockenmörtel für Neubau und Sanierung

AK02.de/ger/03.18/0/OD